from typing import Any, Dict, List, Tuple import hydra import rootutils from lightning import LightningDataModule, LightningModule, Trainer from lightning.pytorch.loggers import Logger from omegaconf import DictConfig rootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) # ------------------------------------------------------------------------------------ # # the setup_root above is equivalent to: # - adding project root dir to PYTHONPATH # (so you don't need to force user to install project as a package) # (necessary before importing any local modules e.g. `from src import utils`) # - setting up PROJECT_ROOT environment variable # (which is used as a base for paths in "configs/paths/default.yaml") # (this way all filepaths are the same no matter where you run the code) # - loading environment variables from ".env" in root dir # # you can remove it if you: # 1. either install project as a package or move entry files to project root dir # 2. set `root_dir` to "." in "configs/paths/default.yaml" # # more info: https://github.com/ashleve/rootutils # ------------------------------------------------------------------------------------ # from src.utils import ( RankedLogger, extras, instantiate_loggers, log_hyperparameters, task_wrapper, ) log = RankedLogger(__name__, rank_zero_only=True) @task_wrapper def evaluate(cfg: DictConfig) -> Tuple[Dict[str, Any], Dict[str, Any]]: """Evaluates given checkpoint on a datamodule testset. This method is wrapped in optional @task_wrapper decorator, that controls the behavior during failure. Useful for multiruns, saving info about the crash, etc. :param cfg: DictConfig configuration composed by Hydra. :return: Tuple[dict, dict] with metrics and dict with all instantiated objects. """ assert cfg.ckpt_path log.info(f"Instantiating datamodule <{cfg.data._target_}>") datamodule: LightningDataModule = hydra.utils.instantiate(cfg.data) log.info(f"Instantiating model <{cfg.model._target_}>") model: LightningModule = hydra.utils.instantiate(cfg.model) log.info("Instantiating loggers...") logger: List[Logger] = instantiate_loggers(cfg.get("logger")) log.info(f"Instantiating trainer <{cfg.trainer._target_}>") trainer: Trainer = hydra.utils.instantiate(cfg.trainer, logger=logger) object_dict = { "cfg": cfg, "datamodule": datamodule, "model": model, "logger": logger, "trainer": trainer, } if logger: log.info("Logging hyperparameters!") log_hyperparameters(object_dict) log.info("Starting testing!") trainer.test(model=model, datamodule=datamodule, ckpt_path=cfg.ckpt_path) # for predictions use trainer.predict(...) # predictions = trainer.predict(model=model, dataloaders=dataloaders, ckpt_path=cfg.ckpt_path) metric_dict = trainer.callback_metrics return metric_dict, object_dict @hydra.main(version_base="1.3", config_path="../configs", config_name="eval.yaml") def main(cfg: DictConfig) -> None: """Main entry point for evaluation. :param cfg: DictConfig configuration composed by Hydra. """ # apply extra utilities # (e.g. ask for tags if none are provided in cfg, print cfg tree, etc.) extras(cfg) evaluate(cfg) if __name__ == "__main__": main()