import gradio as gr import librosa import numpy as np import moviepy.editor as mpy from PIL import Image, ImageDraw, ImageFont from transformers import pipeline fps = 25 max_duration = 60 # seconds video_width = 640 video_height = 480 margin_left = 20 margin_right = 20 margin_top = 20 line_height = 44 background_image = Image.open("background.png") font = ImageFont.truetype("Lato-Regular.ttf", 40) text_color = (255, 200, 200) highlight_color = (255, 255, 255) # checkpoint = "openai/whisper-tiny" # checkpoint = "openai/whisper-base" checkpoint = "openai/whisper-small" pipe = pipeline(model=checkpoint) # TODO: no longer need to set these manually once the models have been updated on the Hub # whisper-base # pipe.model.config.alignment_heads = [[3, 1], [4, 2], [4, 3], [4, 7], [5, 1], [5, 2], [5, 4], [5, 6]] # whisper-small pipe.model.config.alignment_heads = [[5, 3], [5, 9], [8, 0], [8, 4], [8, 7], [8, 8], [9, 0], [9, 7], [9, 9], [10, 5]] chunks = [] def make_frame(t): global chunks # TODO speed optimization: could cache the last image returned and if the # active chunk and active word didn't change, use that last image instead # of drawing the exact same thing again # TODO in the Henry V example, the word "desires" has an ending timestamp # that's too far into the future, and so the word stays highlighted. # Could fix this by finding the latest word that is active in the chunk # and only highlight that one. image = background_image.copy() draw = ImageDraw.Draw(image) # for debugging: draw frame time #draw.text((20, 20), str(t), fill=text_color, font=font) space_length = draw.textlength(" ", font) x = margin_left y = margin_top for chunk in chunks: chunk_start = chunk["timestamp"][0] chunk_end = chunk["timestamp"][1] if chunk_end is None: chunk_end = max_duration if chunk_start <= t <= chunk_end: words = [x["text"] for x in chunk["words"]] word_times = [x["timestamp"] for x in chunk["words"]] for (word, times) in zip(words, word_times): word_length = draw.textlength(word + " ", font) - space_length if x + word_length >= video_width - margin_right: x = margin_left y += line_height if times[0] <= t <= times[1]: color = highlight_color draw.rectangle([x, y + line_height, x + word_length, y + line_height + 4], fill=color) else: color = text_color draw.text((x, y), word, fill=color, font=font) x += word_length + space_length break return np.array(image) def predict(audio_path): global chunks audio_data, sr = librosa.load(audio_path, mono=True) duration = librosa.get_duration(y=audio_data, sr=sr) duration = min(max_duration, duration) audio_data = audio_data[:int(duration * sr)] # Run Whisper to get word-level timestamps. audio_inputs = librosa.resample(audio_data, orig_sr=sr, target_sr=pipe.feature_extractor.sampling_rate) output = pipe(audio_inputs, chunk_length_s=30, stride_length_s=[4, 2], return_timestamps="word") chunks = output["chunks"] #print(chunks) # Create the video. clip = mpy.VideoClip(make_frame, duration=duration) audio_clip = mpy.AudioFileClip(audio_path).set_duration(duration) clip = clip.set_audio(audio_clip) clip.write_videofile("my_video.mp4", fps=fps, codec="libx264", audio_codec="aac") return "my_video.mp4" title = "Word-level timestamps with Whisper" description = """ This demo shows Whisper word-level timestamps in action using Hugging Face Transformers. It creates a video showing subtitled audio with the current word highlighted. This demo uses the openai/whisper-small checkpoint. Since it's only a demo, the output is limited to the first 60 seconds of audio. """ article = """
Credits: