# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import math import warnings from typing import Any, Callable, Dict, List, Optional, Union import PIL import torch import torchvision.transforms.functional as TF from diffusers.configuration_utils import ConfigMixin, FrozenDict, register_to_config from diffusers.image_processor import VaeImageProcessor from diffusers.models import AutoencoderKL, UNet2DConditionModel from diffusers.models.modeling_utils import ModelMixin from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import ( StableDiffusionSafetyChecker, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import deprecate, is_accelerate_available, logging from diffusers.utils.torch_utils import randn_tensor from packaging import version from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection logger = logging.get_logger(__name__) # pylint: disable=invalid-name class CLIPCameraProjection(ModelMixin, ConfigMixin): """ A Projection layer for CLIP embedding and camera embedding. Parameters: embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `clip_embed` additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + additional_embeddings`. """ @register_to_config def __init__(self, embedding_dim: int = 768, additional_embeddings: int = 4): super().__init__() self.embedding_dim = embedding_dim self.additional_embeddings = additional_embeddings self.input_dim = self.embedding_dim + self.additional_embeddings self.output_dim = self.embedding_dim self.proj = torch.nn.Linear(self.input_dim, self.output_dim) def forward( self, embedding: torch.FloatTensor, ): """ The [`PriorTransformer`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, input_dim)`): The currently input embeddings. Returns: The output embedding projection (`torch.FloatTensor` of shape `(batch_size, output_dim)`). """ proj_embedding = self.proj(embedding) return proj_embedding class Zero123Pipeline(DiffusionPipeline): r""" Pipeline to generate variations from an input image using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder. Stable Diffusion Image Variation uses the vision portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """ # TODO: feature_extractor is required to encode images (if they are in PIL format), # we should give a descriptive message if the pipeline doesn't have one. _optional_components = ["safety_checker"] def __init__( self, vae: AutoencoderKL, image_encoder: CLIPVisionModelWithProjection, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, clip_camera_projection: CLIPCameraProjection, requires_safety_checker: bool = True, ): super().__init__() if safety_checker is None and requires_safety_checker: logger.warn( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) is_unet_version_less_0_9_0 = hasattr( unet.config, "_diffusers_version" ) and version.parse( version.parse(unet.config._diffusers_version).base_version ) < version.parse( "0.9.0.dev0" ) is_unet_sample_size_less_64 = ( hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 ) if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: deprecation_message = ( "The configuration file of the unet has set the default `sample_size` to smaller than" " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" " in the config might lead to incorrect results in future versions. If you have downloaded this" " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" " the `unet/config.json` file" ) deprecate( "sample_size<64", "1.0.0", deprecation_message, standard_warn=False ) new_config = dict(unet.config) new_config["sample_size"] = 64 unet._internal_dict = FrozenDict(new_config) self.register_modules( vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, clip_camera_projection=clip_camera_projection, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) def enable_sequential_cpu_offload(self, gpu_id=0): r""" Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. """ if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") device = torch.device(f"cuda:{gpu_id}") for cpu_offloaded_model in [ self.unet, self.image_encoder, self.vae, self.safety_checker, ]: if cpu_offloaded_model is not None: cpu_offload(cpu_offloaded_model, device) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _execution_device(self): r""" Returns the device on which the pipeline's models will be executed. After calling `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module hooks. """ if not hasattr(self.unet, "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(module, "_hf_hook") and hasattr(module._hf_hook, "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device def _encode_image( self, image, elevation, azimuth, distance, device, num_images_per_prompt, do_classifier_free_guidance, clip_image_embeddings=None, image_camera_embeddings=None, ): dtype = next(self.image_encoder.parameters()).dtype if image_camera_embeddings is None: if image is None: assert clip_image_embeddings is not None image_embeddings = clip_image_embeddings.to(device=device, dtype=dtype) else: if not isinstance(image, torch.Tensor): image = self.feature_extractor( images=image, return_tensors="pt" ).pixel_values image = image.to(device=device, dtype=dtype) image_embeddings = self.image_encoder(image).image_embeds image_embeddings = image_embeddings.unsqueeze(1) bs_embed, seq_len, _ = image_embeddings.shape if isinstance(elevation, float): elevation = torch.as_tensor( [elevation] * bs_embed, dtype=dtype, device=device ) if isinstance(azimuth, float): azimuth = torch.as_tensor( [azimuth] * bs_embed, dtype=dtype, device=device ) if isinstance(distance, float): distance = torch.as_tensor( [distance] * bs_embed, dtype=dtype, device=device ) camera_embeddings = torch.stack( [ torch.deg2rad(elevation), torch.sin(torch.deg2rad(azimuth)), torch.cos(torch.deg2rad(azimuth)), distance, ], dim=-1, )[:, None, :] image_embeddings = torch.cat([image_embeddings, camera_embeddings], dim=-1) # project (image, camera) embeddings to the same dimension as clip embeddings image_embeddings = self.clip_camera_projection(image_embeddings) else: image_embeddings = image_camera_embeddings.to(device=device, dtype=dtype) bs_embed, seq_len, _ = image_embeddings.shape # duplicate image embeddings for each generation per prompt, using mps friendly method image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) image_embeddings = image_embeddings.view( bs_embed * num_images_per_prompt, seq_len, -1 ) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(image_embeddings) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) return image_embeddings # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess( image, output_type="pil" ) else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor( feature_extractor_input, return_tensors="pt" ).to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): warnings.warn( "The decode_latents method is deprecated and will be removed in a future version. Please" " use VaeImageProcessor instead", FutureWarning, ) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set( inspect.signature(self.scheduler.step).parameters.keys() ) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set( inspect.signature(self.scheduler.step).parameters.keys() ) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs(self, image, height, width, callback_steps): # TODO: check image size or adjust image size to (height, width) if height % 8 != 0 or width % 8 != 0: raise ValueError( f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor( shape, generator=generator, device=device, dtype=dtype ) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def _get_latent_model_input( self, latents: torch.FloatTensor, image: Optional[ Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] ], num_images_per_prompt: int, do_classifier_free_guidance: bool, image_latents: Optional[torch.FloatTensor] = None, ): if isinstance(image, PIL.Image.Image): image_pt = TF.to_tensor(image).unsqueeze(0).to(latents) elif isinstance(image, list): image_pt = torch.stack([TF.to_tensor(img) for img in image], dim=0).to( latents ) elif isinstance(image, torch.Tensor): image_pt = image else: image_pt = None if image_pt is None: assert image_latents is not None image_pt = image_latents.repeat_interleave(num_images_per_prompt, dim=0) else: image_pt = image_pt * 2.0 - 1.0 # scale to [-1, 1] # FIXME: encoded latents should be multiplied with self.vae.config.scaling_factor # but zero123 was not trained this way image_pt = self.vae.encode(image_pt).latent_dist.mode() image_pt = image_pt.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: latent_model_input = torch.cat( [ torch.cat([latents, latents], dim=0), torch.cat([torch.zeros_like(image_pt), image_pt], dim=0), ], dim=1, ) else: latent_model_input = torch.cat([latents, image_pt], dim=1) return latent_model_input @torch.no_grad() def __call__( self, image: Optional[ Union[PIL.Image.Image, List[PIL.Image.Image], torch.FloatTensor] ] = None, elevation: Optional[Union[float, torch.FloatTensor]] = None, azimuth: Optional[Union[float, torch.FloatTensor]] = None, distance: Optional[Union[float, torch.FloatTensor]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 3.0, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, clip_image_embeddings: Optional[torch.FloatTensor] = None, image_camera_embeddings: Optional[torch.FloatTensor] = None, image_latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): r""" Function invoked when calling the pipeline for generation. Args: image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): The image or images to guide the image generation. If you provide a tensor, it needs to comply with the configuration of [this](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json) `CLIPImageProcessor` height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct # TODO: check input elevation, azimuth, and distance # TODO: check image, clip_image_embeddings, image_latents self.check_inputs(image, height, width, callback_steps) # 2. Define call parameters if isinstance(image, PIL.Image.Image): batch_size = 1 elif isinstance(image, list): batch_size = len(image) elif isinstance(image, torch.Tensor): batch_size = image.shape[0] else: assert image_latents is not None assert ( clip_image_embeddings is not None or image_camera_embeddings is not None ) batch_size = image_latents.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input image if isinstance(image, PIL.Image.Image) or isinstance(image, list): pil_image = image elif isinstance(image, torch.Tensor): pil_image = [TF.to_pil_image(image[i]) for i in range(image.shape[0])] else: pil_image = None image_embeddings = self._encode_image( pil_image, elevation, azimuth, distance, device, num_images_per_prompt, do_classifier_free_guidance, clip_image_embeddings, image_camera_embeddings, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables # num_channels_latents = self.unet.config.in_channels num_channels_latents = 4 # FIXME: hard-coded latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = self._get_latent_model_input( latents, image, num_images_per_prompt, do_classifier_free_guidance, image_latents, ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=image_embeddings, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs ).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if not output_type == "latent": image = self.vae.decode( latents / self.vae.config.scaling_factor, return_dict=False )[0] image, has_nsfw_concept = self.run_safety_checker( image, device, image_embeddings.dtype ) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess( image, output_type=output_type, do_denormalize=do_denormalize ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput( images=image, nsfw_content_detected=has_nsfw_concept )