# import torch # from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # import gradio as gr # # Load your custom model and tokenizer # model_name = "MiVaCod/mbart-neutralization" # tokenizer = AutoTokenizer.from_pretrained(model_name) # model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # # Function to correct sentences # def predict(sentence): # inputs = tokenizer.encode("correction: " + sentence, return_tensors="pt", max_length=512, truncation=True) # outputs = model.generate(inputs, max_length=128, num_beams=4, early_stopping=True) # corrected_sentence = tokenizer.decode(outputs[0], skip_special_tokens=True) # return corrected_sentence # # Gradio Interface # iface = gr.Interface( # fn=correct_sentence, # inputs="text", # outputs="text", # title="Sentence Correction", # description="Enter a sentence to be corrected:", # theme="compact" # ) # # Launch the interface # gr.Interface(fn=predict, inputs=gr.inputs.Textbox, outputs=gr.outputs.Textbox).launch(share=False) from transformers import MBartForConditionalGeneration, MBart50Tokenizer import gradio as grad model_name = "MiVaCod/mbart-neutralization" text2text_tkn= MBart50Tokenizer.from_pretrained(model_name) mdl = MBartForConditionalGeneration.from_pretrained(model_name) def text2text_paraphrase(sentence1): inp1 = "rte sentence1: "+sentence1 enc = text2text_tkn(inp1, return_tensors="pt") tokens = mdl.generate(**enc) response=text2text_tkn.batch_decode(tokens) return response sent1=grad.Textbox(lines=1, label="Frase misógina", placeholder="Introduce una frase misógina") out=grad.Textbox(lines=1, label="Frase corregida") grad.Interface(text2text_paraphrase, inputs=[sent1], outputs=out).launch()