import numpy as np import gradio as gr from PIL import Image import tensorflow as tf from tensorflow import keras from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("Harveenchadha/low-light-image-enhancement", compile=False) #examples = ['examples/179.png', 'examples/493.png', 'examples/780.png'] def infer(original_image): print(original_image.shape()) image = keras.preprocessing.image.img_to_array(original_image) image = image.astype("float32") / 255.0 image = np.expand_dims(image, axis=0) print(image.shape()) output = model.predict(image) # print(len(output)) # print([len(a) for a in output]) output_image = output[0] * 255.0 output_image = output_image.clip(0, 255) output_image = output_image.reshape( (np.shape(output_image)[0], np.shape(output_image)[1], 3) ) output_image = np.uint32(output_image) # output_image = tf.cast((output[0, :, :, :] * 255), dtype=np.uint8) # #output_image = Image.fromarray(output_image.numpy()) # output_image = output_image.numpy() # print(output_image.shape()) return output_image iface = gr.Interface( fn=infer, title="Low Light Image Enhancement", description = "Keras Implementation of MIRNet model for light up the dark image 🌆🎆", inputs=[gr.inputs.Image(label="image", type="pil")], outputs=[gr.outputs.Image(label="image", type="numpy")], #examples=examples, article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/vision/mirnet/\">Soumik Rakshit</a>", ).launch(debug=True)