import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) import gradio as gr import spaces from gradio_litmodel3d import LitModel3D import os os.environ['SPCONV_ALGO'] = 'native' from typing import * import torch import numpy as np import imageio import uuid from easydict import EasyDict as edict from PIL import Image from trellis.pipelines import TrellisImageTo3DPipeline from trellis.representations import Gaussian, MeshExtractResult from trellis.utils import render_utils, postprocessing_utils from gradio_client import Client from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images import random llm_client = Client("Qwen/Qwen2.5-72B-Instruct") device = "cuda" if torch.cuda.is_available() else "cpu" taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device) good_vae = AutoencoderKL.from_pretrained("Freepik/flux.1-lite-8B-alpha", subfolder="vae", torch_dtype=torch.bfloat16).to(device) pipe = FluxPipeline.from_pretrained("Freepik/flux.1-lite-8B-alpha", torch_dtype=torch.bfloat16, vae=taef1).to(device) pipe.vae.enable_tiling() pipe.vae.enable_slicing() # pipe.enable_sequential_cpu_offload() # offloads modules to CPU on a submodule level (rather than model level) torch.cuda.empty_cache() pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) MAX_SEED = np.iinfo(np.int32).max TMP_DIR = "/tmp/Trellis-demo" os.makedirs(TMP_DIR, exist_ok=True) def generate_t2i_prompt(item_name): llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it. ### Guidelines: 1. **Whole Item Focus**: The description should emphasize the full item, ensuring it is clearly depicted in the image. 2. **Concise Details**: Use vivid but compact language to describe the item's shape, materials, textures, colors, and unique features. Avoid unnecessary elaboration or context. 3. **No Background Details**: Specify that the background is plain and monocolor without describing it further. ### Examples: Item: "Golden Pocket Watch" A vintage golden pocket watch with intricate floral engravings, polished metal, and Roman numerals on its clock face. Its chain is smooth and reflective, completing the elegant design. Item: "Crystal Vase" A tall crystal vase with a fluted top edge, clear polished surface, and delicate floral engravings. The crystal glimmers subtly, showing off its refined craftsmanship. Now generate a concise description for the item: "{item_name}" Focus on the item itself, ensuring it is fully described, and specify a plain, white background and the output is no longer than 77 tokens. """ object_t2i_prompt = llm_client.predict( query=llm_prompt_template.format(item_name=item_name), history=[], system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.", api_name="/model_chat", )[1][0][-1] print(object_t2i_prompt) return object_t2i_prompt def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]: """ Preprocess the input image. Args: image (Image.Image): The input image. Returns: str: uuid of the trial. Image.Image: The preprocessed image. """ trial_id = str(uuid.uuid4()) processed_image = pipeline.preprocess_image(image) processed_image.save(f"{TMP_DIR}/{trial_id}.png") return trial_id, processed_image @spaces.GPU(duration=75) def generate_item_image(object_t2i_prompt): trial_id = "" seed = random.randint(0, MAX_SEED) for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=object_t2i_prompt, guidance_scale=3.5, num_inference_steps=28, width=512, height=512, generator=torch.Generator().manual_seed(seed), output_type="pil", good_vae=good_vae, ): yield trial_id, image trial_id, processed_image = preprocess_pil_image(image) yield trial_id, processed_image def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict: return { 'gaussian': { **gs.init_params, '_xyz': gs._xyz.cpu().numpy(), '_features_dc': gs._features_dc.cpu().numpy(), '_scaling': gs._scaling.cpu().numpy(), '_rotation': gs._rotation.cpu().numpy(), '_opacity': gs._opacity.cpu().numpy(), }, 'mesh': { 'vertices': mesh.vertices.cpu().numpy(), 'faces': mesh.faces.cpu().numpy(), }, 'trial_id': trial_id, } def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: gs = Gaussian( aabb=state['gaussian']['aabb'], sh_degree=state['gaussian']['sh_degree'], mininum_kernel_size=state['gaussian']['mininum_kernel_size'], scaling_bias=state['gaussian']['scaling_bias'], opacity_bias=state['gaussian']['opacity_bias'], scaling_activation=state['gaussian']['scaling_activation'], ) gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') mesh = edict( vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), faces=torch.tensor(state['mesh']['faces'], device='cuda'), ) return gs, mesh, state['trial_id'] @spaces.GPU def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]: """ Convert an image to a 3D model. Args: trial_id (str): The uuid of the trial. seed (int): The random seed. randomize_seed (bool): Whether to randomize the seed. ss_guidance_strength (float): The guidance strength for sparse structure generation. ss_sampling_steps (int): The number of sampling steps for sparse structure generation. slat_guidance_strength (float): The guidance strength for structured latent generation. slat_sampling_steps (int): The number of sampling steps for structured latent generation. Returns: dict: The information of the generated 3D model. str: The path to the video of the 3D model. """ if randomize_seed: seed = np.random.randint(0, MAX_SEED) outputs = pipeline.run( Image.open(f"{TMP_DIR}/{trial_id}.png"), seed=seed, formats=["gaussian", "mesh"], preprocess_image=False, sparse_structure_sampler_params={ "steps": ss_sampling_steps, "cfg_strength": ss_guidance_strength, }, slat_sampler_params={ "steps": slat_sampling_steps, "cfg_strength": slat_guidance_strength, }, ) video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] trial_id = uuid.uuid4() video_path = f"{TMP_DIR}/{trial_id}.mp4" os.makedirs(os.path.dirname(video_path), exist_ok=True) imageio.mimsave(video_path, video, fps=15) state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id) return state, video_path @spaces.GPU def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]: """ Extract a GLB file from the 3D model. Args: state (dict): The state of the generated 3D model. mesh_simplify (float): The mesh simplification factor. texture_size (int): The texture resolution. Returns: str: The path to the extracted GLB file. """ gs, mesh, trial_id = unpack_state(state) glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) glb_path = f"{TMP_DIR}/{trial_id}.glb" glb.export(glb_path) return glb_path, glb_path def activate_button() -> gr.Button: return gr.Button(interactive=True) def deactivate_button() -> gr.Button: return gr.Button(interactive=False) with gr.Blocks(title="Game Items Generator") as demo: gr.HTML("