diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..200e1f3ba1da6cfa52f3b1fb08087653a10fb9e5
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,112 @@
+# IntelliJ project files
+.idea
+*.iml
+out
+gen
+
+### Vim template
+[._]*.s[a-w][a-z]
+[._]s[a-w][a-z]
+*.un~
+Session.vim
+.netrwhist
+*~
+
+### IPythonNotebook template
+# Temporary data
+.ipynb_checkpoints/
+
+### Python template
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+#lib/
+#lib64/
+parts/
+sdist/
+var/
+*.egg-info/
+.installed.cfg
+*.egg
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*,cover
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+*.ipynb
+*.params
+# *.json
+.vscode/
+*.code-workspace/
+
+lib/pycocotools/_mask.c
+lib/nms/cpu_nms.c
+
+OUTPUT
+OUTPUT/*
+models/*
+DATASET
+DATASET/*
+external/
+MODELS
+MODELS/*
+gradio_cached_examples/*
+
+kill.sh
+
+draws/
+#:wq
+#plot/figs
+
+*venv/*
+
+# images
+# images/*
+
+create_samples/
+create_samples/*
+
+ckpts/*
diff --git a/DejaVuSansMono.ttf b/DejaVuSansMono.ttf
new file mode 100644
index 0000000000000000000000000000000000000000..f5786022f18216b4c59c6fb0c634b52c8b6e7990
Binary files /dev/null and b/DejaVuSansMono.ttf differ
diff --git a/__init__.py b/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..5254a02ee7f664b0fab92805e8c3bab9014ed809
--- /dev/null
+++ b/app.py
@@ -0,0 +1,758 @@
+import gradio as gr
+import torch
+import argparse
+from omegaconf import OmegaConf
+from gligen.task_grounded_generation import grounded_generation_box, load_ckpt
+
+import json
+import numpy as np
+from PIL import Image, ImageDraw, ImageFont
+from functools import partial
+import math
+
+from gradio import processing_utils
+from typing import Optional
+
+from huggingface_hub import hf_hub_download
+hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
+
+
+arg_bool = lambda x: x.lower() == 'true'
+
+
+def parse_option():
+ parser = argparse.ArgumentParser('GLIGen Demo', add_help=False)
+ parser.add_argument("--folder", type=str, default="create_samples", help="path to OUTPUT")
+ parser.add_argument("--official_ckpt", type=str, default='ckpts/sd-v1-4.ckpt', help="")
+ parser.add_argument("--guidance_scale", type=float, default=5, help="")
+ parser.add_argument("--alpha_scale", type=float, default=1, help="scale tanh(alpha). If 0, the behaviour is same as original model")
+ parser.add_argument("--load-text-box-generation", type=arg_bool, default=True, help="Load text-box generation pipeline.")
+ parser.add_argument("--load-text-box-inpainting", type=arg_bool, default=True, help="Load text-box inpainting pipeline.")
+ parser.add_argument("--load-text-image-box-generation", type=arg_bool, default=True, help="Load text-image-box generation pipeline.")
+ args = parser.parse_args()
+ return args
+args = parse_option()
+
+
+def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin'):
+ cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
+ return torch.load(cache_file, map_location='cpu')
+
+def load_ckpt_config_from_hf(modality):
+ ckpt = load_from_hf(f'gligen/{modality}')
+ config = load_from_hf('gligen/demo_config_legacy', filename=f'{modality}.pth')
+ return ckpt, config
+
+
+if args.load_text_box_generation:
+ pretrained_ckpt_gligen, config = load_ckpt_config_from_hf('gligen-generation-text-box')
+ config = OmegaConf.create( config["_content"] ) # config used in training
+ config.update( vars(args) )
+ config.model['params']['is_inpaint'] = False
+ config.model['params']['is_style'] = False
+ loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen)
+
+
+if args.load_text_box_inpainting:
+ pretrained_ckpt_gligen_inpaint, config = load_ckpt_config_from_hf('gligen-inpainting-text-box')
+ config = OmegaConf.create( config["_content"] ) # config used in training
+ config.update( vars(args) )
+ config.model['params']['is_inpaint'] = True
+ config.model['params']['is_style'] = False
+ loaded_model_list_inpaint = load_ckpt(config, pretrained_ckpt_gligen_inpaint)
+
+
+if args.load_text_image_box_generation:
+ pretrained_ckpt_gligen_style, config = load_ckpt_config_from_hf('gligen-generation-text-image-box')
+ config = OmegaConf.create( config["_content"] ) # config used in training
+ config.update( vars(args) )
+ config.model['params']['is_inpaint'] = False
+ config.model['params']['is_style'] = True
+ loaded_model_list_style = load_ckpt(config, pretrained_ckpt_gligen_style)
+
+
+def load_clip_model():
+ from transformers import CLIPProcessor, CLIPModel
+ version = "openai/clip-vit-large-patch14"
+ model = CLIPModel.from_pretrained(version).cuda()
+ processor = CLIPProcessor.from_pretrained(version)
+
+ return {
+ 'version': version,
+ 'model': model,
+ 'processor': processor,
+ }
+
+clip_model = load_clip_model()
+
+
+class ImageMask(gr.components.Image):
+ """
+ Sets: source="canvas", tool="sketch"
+ """
+
+ is_template = True
+
+ def __init__(self, **kwargs):
+ super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
+
+ def preprocess(self, x):
+ if x is None:
+ return x
+ if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
+ decode_image = processing_utils.decode_base64_to_image(x)
+ width, height = decode_image.size
+ mask = np.zeros((height, width, 4), dtype=np.uint8)
+ mask[..., -1] = 255
+ mask = self.postprocess(mask)
+ x = {'image': x, 'mask': mask}
+ return super().preprocess(x)
+
+
+class Blocks(gr.Blocks):
+
+ def __init__(
+ self,
+ theme: str = "default",
+ analytics_enabled: Optional[bool] = None,
+ mode: str = "blocks",
+ title: str = "Gradio",
+ css: Optional[str] = None,
+ **kwargs,
+ ):
+
+ self.extra_configs = {
+ 'thumbnail': kwargs.pop('thumbnail', ''),
+ 'url': kwargs.pop('url', 'https://gradio.app/'),
+ 'creator': kwargs.pop('creator', '@teamGradio'),
+ }
+
+ super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
+
+ def get_config_file(self):
+ config = super(Blocks, self).get_config_file()
+
+ for k, v in self.extra_configs.items():
+ config[k] = v
+
+ return config
+
+'''
+inference model
+'''
+
+@torch.no_grad()
+def inference(task, language_instruction, grounding_instruction, inpainting_boxes_nodrop, image,
+ alpha_sample, guidance_scale, batch_size,
+ fix_seed, rand_seed, actual_mask, style_image,
+ *args, **kwargs):
+ grounding_instruction = json.loads(grounding_instruction)
+ phrase_list, location_list = [], []
+ for k, v in grounding_instruction.items():
+ phrase_list.append(k)
+ location_list.append(v)
+
+ placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
+ image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
+
+ batch_size = int(batch_size)
+ if not 1 <= batch_size <= 2:
+ batch_size = 2
+
+ if style_image == None:
+ has_text_mask = 1
+ has_image_mask = 0 # then we hack above 'image_list'
+ else:
+ valid_phrase_len = len(phrase_list)
+
+ phrase_list += ['placeholder']
+ has_text_mask = [1]*valid_phrase_len + [0]
+
+ image_list = [placeholder_image]*valid_phrase_len + [style_image]
+ has_image_mask = [0]*valid_phrase_len + [1]
+
+ location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location
+
+ if task == 'Grounded Inpainting':
+ alpha_sample = 1.0
+
+ instruction = dict(
+ prompt = language_instruction,
+ phrases = phrase_list,
+ images = image_list,
+ locations = location_list,
+ alpha_type = [alpha_sample, 0, 1.0 - alpha_sample],
+ has_text_mask = has_text_mask,
+ has_image_mask = has_image_mask,
+ save_folder_name = language_instruction,
+ guidance_scale = guidance_scale,
+ batch_size = batch_size,
+ fix_seed = bool(fix_seed),
+ rand_seed = int(rand_seed),
+ actual_mask = actual_mask,
+ inpainting_boxes_nodrop = inpainting_boxes_nodrop,
+ )
+
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
+ if task == 'Grounded Generation':
+ if style_image == None:
+ return grounded_generation_box(loaded_model_list, instruction, *args, **kwargs)
+ else:
+ return grounded_generation_box(loaded_model_list_style, instruction, *args, **kwargs)
+ elif task == 'Grounded Inpainting':
+ assert image is not None
+ instruction['input_image'] = image.convert("RGB")
+ return grounded_generation_box(loaded_model_list_inpaint, instruction, *args, **kwargs)
+
+
+def draw_box(boxes=[], texts=[], img=None):
+ if len(boxes) == 0 and img is None:
+ return None
+
+ if img is None:
+ img = Image.new('RGB', (512, 512), (255, 255, 255))
+ colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
+ draw = ImageDraw.Draw(img)
+ font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
+ for bid, box in enumerate(boxes):
+ draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
+ anno_text = texts[bid]
+ draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
+ draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
+ return img
+
+def get_concat(ims):
+ if len(ims) == 1:
+ n_col = 1
+ else:
+ n_col = 2
+ n_row = math.ceil(len(ims) / 2)
+ dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
+ for i, im in enumerate(ims):
+ row_id = i // n_col
+ col_id = i % n_col
+ dst.paste(im, (im.width * col_id, im.height * row_id))
+ return dst
+
+
+def auto_append_grounding(language_instruction, grounding_texts):
+ for grounding_text in grounding_texts:
+ if grounding_text not in language_instruction and grounding_text != 'auto':
+ language_instruction += "; " + grounding_text
+ print(language_instruction)
+ return language_instruction
+
+
+
+
+def generate(task, language_instruction, grounding_texts, sketch_pad,
+ alpha_sample, guidance_scale, batch_size,
+ fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
+ state):
+ if 'boxes' not in state:
+ state['boxes'] = []
+
+ boxes = state['boxes']
+ grounding_texts = [x.strip() for x in grounding_texts.split(';')]
+ assert len(boxes) == len(grounding_texts)
+ boxes = (np.asarray(boxes) / 512).tolist()
+ grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
+
+ image = None
+ actual_mask = None
+ if task == 'Grounded Inpainting':
+ image = state.get('original_image', sketch_pad['image']).copy()
+ image = center_crop(image)
+ image = Image.fromarray(image)
+
+ if use_actual_mask:
+ actual_mask = sketch_pad['mask'].copy()
+ if actual_mask.ndim == 3:
+ actual_mask = actual_mask[..., 0]
+ actual_mask = center_crop(actual_mask, tgt_size=(64, 64))
+ actual_mask = torch.from_numpy(actual_mask == 0).float()
+
+ if state.get('inpaint_hw', None):
+ boxes = np.asarray(boxes) * 0.9 + 0.05
+ boxes = boxes.tolist()
+ grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes) if obj != 'auto'})
+
+ if append_grounding:
+ language_instruction = auto_append_grounding(language_instruction, grounding_texts)
+
+ gen_images, gen_overlays = inference(
+ task, language_instruction, grounding_instruction, boxes, image,
+ alpha_sample, guidance_scale, batch_size,
+ fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
+ )
+
+ for idx, gen_image in enumerate(gen_images):
+
+ if task == 'Grounded Inpainting' and state.get('inpaint_hw', None):
+ hw = min(*state['original_image'].shape[:2])
+ gen_image = sized_center_fill(state['original_image'].copy(), np.array(gen_image.resize((hw, hw))), hw, hw)
+ gen_image = Image.fromarray(gen_image)
+
+ gen_images[idx] = gen_image
+
+ blank_samples = batch_size % 2 if batch_size > 1 else 0
+ gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
+ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
+
+ return gen_images + [state]
+
+
+def binarize(x):
+ return (x != 0).astype('uint8') * 255
+
+def sized_center_crop(img, cropx, cropy):
+ y, x = img.shape[:2]
+ startx = x // 2 - (cropx // 2)
+ starty = y // 2 - (cropy // 2)
+ return img[starty:starty+cropy, startx:startx+cropx]
+
+def sized_center_fill(img, fill, cropx, cropy):
+ y, x = img.shape[:2]
+ startx = x // 2 - (cropx // 2)
+ starty = y // 2 - (cropy // 2)
+ img[starty:starty+cropy, startx:startx+cropx] = fill
+ return img
+
+def sized_center_mask(img, cropx, cropy):
+ y, x = img.shape[:2]
+ startx = x // 2 - (cropx // 2)
+ starty = y // 2 - (cropy // 2)
+ center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
+ img = (img * 0.2).astype('uint8')
+ img[starty:starty+cropy, startx:startx+cropx] = center_region
+ return img
+
+def center_crop(img, HW=None, tgt_size=(512, 512)):
+ if HW is None:
+ H, W = img.shape[:2]
+ HW = min(H, W)
+ img = sized_center_crop(img, HW, HW)
+ img = Image.fromarray(img)
+ img = img.resize(tgt_size)
+ return np.array(img)
+
+def draw(task, input, grounding_texts, new_image_trigger, state):
+ if type(input) == dict:
+ image = input['image']
+ mask = input['mask']
+ else:
+ mask = input
+
+ if mask.ndim == 3:
+ mask = mask[..., 0]
+
+ image_scale = 1.0
+
+ # resize trigger
+ if task == "Grounded Inpainting":
+ mask_cond = mask.sum() == 0
+ # size_cond = mask.shape != (512, 512)
+ if mask_cond and 'original_image' not in state:
+ image = Image.fromarray(image)
+ width, height = image.size
+ scale = 600 / min(width, height)
+ image = image.resize((int(width * scale), int(height * scale)))
+ state['original_image'] = np.array(image).copy()
+ image_scale = float(height / width)
+ return [None, new_image_trigger + 1, image_scale, state]
+ else:
+ original_image = state['original_image']
+ H, W = original_image.shape[:2]
+ image_scale = float(H / W)
+
+ mask = binarize(mask)
+ if mask.shape != (512, 512):
+ # assert False, "should not receive any non- 512x512 masks."
+ if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
+ mask = center_crop(mask, state['inpaint_hw'])
+ image = center_crop(state['original_image'], state['inpaint_hw'])
+ else:
+ mask = np.zeros((512, 512), dtype=np.uint8)
+ # mask = center_crop(mask)
+ mask = binarize(mask)
+
+ if type(mask) != np.ndarray:
+ mask = np.array(mask)
+
+ if mask.sum() == 0 and task != "Grounded Inpainting":
+ state = {}
+
+ if task != 'Grounded Inpainting':
+ image = None
+ else:
+ image = Image.fromarray(image)
+
+ if 'boxes' not in state:
+ state['boxes'] = []
+
+ if 'masks' not in state or len(state['masks']) == 0:
+ state['masks'] = []
+ last_mask = np.zeros_like(mask)
+ else:
+ last_mask = state['masks'][-1]
+
+ if type(mask) == np.ndarray and mask.size > 1:
+ diff_mask = mask - last_mask
+ else:
+ diff_mask = np.zeros([])
+
+ if diff_mask.sum() > 0:
+ x1x2 = np.where(diff_mask.max(0) != 0)[0]
+ y1y2 = np.where(diff_mask.max(1) != 0)[0]
+ y1, y2 = y1y2.min(), y1y2.max()
+ x1, x2 = x1x2.min(), x1x2.max()
+
+ if (x2 - x1 > 5) and (y2 - y1 > 5):
+ state['masks'].append(mask.copy())
+ state['boxes'].append((x1, y1, x2, y2))
+
+ grounding_texts = [x.strip() for x in grounding_texts.split(';')]
+ grounding_texts = [x for x in grounding_texts if len(x) > 0]
+ if len(grounding_texts) < len(state['boxes']):
+ grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]
+
+ box_image = draw_box(state['boxes'], grounding_texts, image)
+
+ if box_image is not None and state.get('inpaint_hw', None):
+ inpaint_hw = state['inpaint_hw']
+ box_image_resize = np.array(box_image.resize((inpaint_hw, inpaint_hw)))
+ original_image = state['original_image'].copy()
+ box_image = sized_center_fill(original_image, box_image_resize, inpaint_hw, inpaint_hw)
+
+ return [box_image, new_image_trigger, image_scale, state]
+
+def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
+ if task != 'Grounded Inpainting':
+ sketch_pad_trigger = sketch_pad_trigger + 1
+ blank_samples = batch_size % 2 if batch_size > 1 else 0
+ out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
+ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
+ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
+ state = {}
+ return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
+
+css = """
+#generate-btn {
+ --tw-border-opacity: 1;
+ border-color: rgb(255 216 180 / var(--tw-border-opacity));
+ --tw-gradient-from: rgb(255 216 180 / .7);
+ --tw-gradient-to: rgb(255 216 180 / 0);
+ --tw-gradient-stops: var(--tw-gradient-from), var(--tw-gradient-to);
+ --tw-gradient-to: rgb(255 176 102 / .8);
+ --tw-text-opacity: 1;
+ color: rgb(238 116 0 / var(--tw-text-opacity));
+}
+#img2img_image, #img2img_image > .h-60, #img2img_image > .h-60 > div, #img2img_image > .h-60 > div > img
+{
+ height: var(--height) !important;
+ max-height: var(--height) !important;
+ min-height: var(--height) !important;
+}
+#mirrors a:hover {
+ cursor:pointer;
+}
+#paper-info a {
+ color:#008AD7;
+}
+#paper-info a:hover {
+ cursor: pointer;
+}
+"""
+
+rescale_js = """
+function(x) {
+ const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
+ let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
+ const image_width = root.querySelector('#img2img_image').clientWidth;
+ const target_height = parseInt(image_width * image_scale);
+ document.body.style.setProperty('--height', `${target_height}px`);
+ root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
+ root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
+ return x;
+}
+"""
+
+mirror_js = """
+function () {
+ const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
+ const mirrors_div = root.querySelector('#mirrors');
+ const current_url = window.location.href;
+ const mirrors = [
+ 'https://dev.hliu.cc/gligen_mirror1/',
+ 'https://dev.hliu.cc/gligen_mirror2/',
+ ];
+
+ let mirror_html = '';
+ mirror_html += '[Project Page]';
+ mirror_html += '[Paper]';
+ mirror_html += '[GitHub Repo]';
+ mirror_html += ' | ';
+ mirror_html += 'Mirrors: ';
+
+ mirrors.forEach((e, index) => {
+ let cur_index = index + 1;
+ if (current_url.includes(e)) {
+ mirror_html += `[Mirror ${cur_index}] `;
+ } else {
+ mirror_html += `[Mirror ${cur_index}] `;
+ }
+ });
+
+ mirror_html = `
${mirror_html}
`;
+
+ mirrors_div.innerHTML = mirror_html;
+}
+"""
+
+with Blocks(
+ css=css,
+ analytics_enabled=False,
+ title="GLIGen demo",
+) as main:
+ gr.Markdown('GLIGen: Open-Set Grounded Text-to-Image Generation
')
+ gr.Markdown("""""")
+ # gr.HTML("", elem_id="mirrors")
+ gr.Markdown("To ground concepts of interest with desired spatial specification, please (1) ⌨️ enter the concept names in Grounding Instruction, and (2) 🖱️ draw their corresponding bounding boxes one by one using Sketch Pad -- the parsed boxes will be displayed automatically.")
+ with gr.Row():
+ with gr.Column(scale=4):
+ sketch_pad_trigger = gr.Number(value=0, visible=False)
+ sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
+ init_white_trigger = gr.Number(value=0, visible=False)
+ image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
+ new_image_trigger = gr.Number(value=0, visible=False)
+
+ task = gr.Radio(
+ choices=["Grounded Generation", 'Grounded Inpainting'],
+ type="value",
+ value="Grounded Generation",
+ label="Task",
+ )
+ language_instruction = gr.Textbox(
+ label="Language instruction",
+ )
+ grounding_instruction = gr.Textbox(
+ label="Grounding instruction (Separated by semicolon)",
+ )
+ with gr.Row():
+ sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
+ out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
+ with gr.Row():
+ clear_btn = gr.Button(value='Clear')
+ gen_btn = gr.Button(value='Generate', elem_id="generate-btn")
+ with gr.Accordion("Advanced Options", open=False):
+ with gr.Column():
+ alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (τ)")
+ guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
+ batch_size = gr.Slider(minimum=1, maximum=2, step=1, value=2, label="Number of Samples")
+ append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
+ use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
+ with gr.Row():
+ fix_seed = gr.Checkbox(value=True, label="Fixed seed")
+ rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed")
+ with gr.Row():
+ use_style_cond = gr.Checkbox(value=False, label="Enable Style Condition")
+ style_cond_image = gr.Image(type="pil", label="Style Condition", visible=False, interactive=True)
+ with gr.Column(scale=4):
+ gr.Markdown("### Generated Images")
+ with gr.Row():
+ out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
+ out_gen_2 = gr.Image(type="pil", visible=True, show_label=False)
+ with gr.Row():
+ out_gen_3 = gr.Image(type="pil", visible=False, show_label=False)
+ out_gen_4 = gr.Image(type="pil", visible=False, show_label=False)
+
+ state = gr.State({})
+
+ class Controller:
+ def __init__(self):
+ self.calls = 0
+ self.tracks = 0
+ self.resizes = 0
+ self.scales = 0
+
+ def init_white(self, init_white_trigger):
+ self.calls += 1
+ return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1
+
+ def change_n_samples(self, n_samples):
+ blank_samples = n_samples % 2 if n_samples > 1 else 0
+ return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
+ + [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
+
+ def resize_centercrop(self, state):
+ self.resizes += 1
+ image = state['original_image'].copy()
+ inpaint_hw = int(0.9 * min(*image.shape[:2]))
+ state['inpaint_hw'] = inpaint_hw
+ image_cc = center_crop(image, inpaint_hw)
+ # print(f'resize triggered {self.resizes}', image.shape, '->', image_cc.shape)
+ return image_cc, state
+
+ def resize_masked(self, state):
+ self.resizes += 1
+ image = state['original_image'].copy()
+ inpaint_hw = int(0.9 * min(*image.shape[:2]))
+ state['inpaint_hw'] = inpaint_hw
+ image_mask = sized_center_mask(image, inpaint_hw, inpaint_hw)
+ state['masked_image'] = image_mask.copy()
+ # print(f'mask triggered {self.resizes}')
+ return image_mask, state
+
+ def switch_task_hide_cond(self, task):
+ cond = False
+ if task == "Grounded Generation":
+ cond = True
+
+ return gr.Checkbox.update(visible=cond, value=False), gr.Image.update(value=None, visible=False), gr.Slider.update(visible=cond), gr.Checkbox.update(visible=(not cond), value=False)
+
+ controller = Controller()
+ main.load(
+ lambda x:x+1,
+ inputs=sketch_pad_trigger,
+ outputs=sketch_pad_trigger,
+ queue=False)
+ sketch_pad.edit(
+ draw,
+ inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
+ outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
+ queue=False,
+ )
+ grounding_instruction.change(
+ draw,
+ inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
+ outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
+ queue=False,
+ )
+ clear_btn.click(
+ clear,
+ inputs=[task, sketch_pad_trigger, batch_size, state],
+ outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
+ queue=False)
+ task.change(
+ partial(clear, switch_task=True),
+ inputs=[task, sketch_pad_trigger, batch_size, state],
+ outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
+ queue=False)
+ sketch_pad_trigger.change(
+ controller.init_white,
+ inputs=[init_white_trigger],
+ outputs=[sketch_pad, image_scale, init_white_trigger],
+ queue=False)
+ sketch_pad_resize_trigger.change(
+ controller.resize_masked,
+ inputs=[state],
+ outputs=[sketch_pad, state],
+ queue=False)
+ batch_size.change(
+ controller.change_n_samples,
+ inputs=[batch_size],
+ outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4],
+ queue=False)
+ gen_btn.click(
+ generate,
+ inputs=[
+ task, language_instruction, grounding_instruction, sketch_pad,
+ alpha_sample, guidance_scale, batch_size,
+ fix_seed, rand_seed,
+ use_actual_mask,
+ append_grounding, style_cond_image,
+ state,
+ ],
+ outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
+ queue=True
+ )
+ sketch_pad_resize_trigger.change(
+ None,
+ None,
+ sketch_pad_resize_trigger,
+ _js=rescale_js,
+ queue=False)
+ init_white_trigger.change(
+ None,
+ None,
+ init_white_trigger,
+ _js=rescale_js,
+ queue=False)
+ use_style_cond.change(
+ lambda cond: gr.Image.update(visible=cond),
+ use_style_cond,
+ style_cond_image,
+ queue=False)
+ task.change(
+ controller.switch_task_hide_cond,
+ inputs=task,
+ outputs=[use_style_cond, style_cond_image, alpha_sample, use_actual_mask],
+ queue=False)
+
+ with gr.Column():
+ gr.Examples(
+ examples=[
+ [
+ "images/blank.png",
+ "Grounded Generation",
+ "a dog and an apple",
+ "a dog;an apple",
+ ],
+ [
+ "images/blank.png",
+ "Grounded Generation",
+ "John Lennon is using a pc",
+ "John Lennon;a pc",
+ [
+ "images/blank.png",
+ "Grounded Generation",
+ "a painting of a fox sitting in a field at sunrise in the style of Claude Mone",
+ "fox;sunrise",
+ ],
+ ],
+ [
+ "images/blank.png",
+ "Grounded Generation",
+ "a beautiful painting of hot dog by studio ghibli, octane render, brilliantly coloured",
+ "hot dog",
+ ],
+ [
+ "images/blank.png",
+ "Grounded Generation",
+ "a sport car, unreal engine, global illumination, ray tracing",
+ "a sport car",
+ ],
+ [
+ "images/flower_beach.jpg",
+ "Grounded Inpainting",
+ "a squirrel and the space needle",
+ "a squirrel;the space needle",
+ ],
+ [
+ "images/arg_corgis.jpeg",
+ "Grounded Inpainting",
+ "a dog and a birthday cake",
+ "a dog; a birthday cake",
+ ],
+ [
+ "images/teddy.jpg",
+ "Grounded Inpainting",
+ "a teddy bear wearing a santa claus red shirt; holding a Christmas gift box on hand",
+ "a santa claus shirt; a Christmas gift box",
+ ],
+ ],
+ inputs=[sketch_pad, task, language_instruction, grounding_instruction],
+ outputs=None,
+ fn=None,
+ cache_examples=False,
+ )
+
+main.queue(concurrency_count=1, api_open=False)
+main.launch(share=False, show_api=False)
+
+
diff --git a/dataset/__init__.py b/dataset/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/dataset/base_dataset.py b/dataset/base_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..3005bfc7cbef54b20006ca88ee01783cec9425c3
--- /dev/null
+++ b/dataset/base_dataset.py
@@ -0,0 +1,220 @@
+import torch
+from PIL import Image, ImageDraw
+import torchvision.transforms as transforms
+import torchvision
+from zipfile import ZipFile
+import os
+import multiprocessing
+import math
+import numpy as np
+import random
+from io import BytesIO
+
+VALID_IMAGE_TYPES = ['.jpg', '.jpeg', '.tiff', '.bmp', '.png']
+
+
+def check_filenames_in_zipdata(filenames, ziproot):
+ samples = []
+ for fst in ZipFile(ziproot).infolist():
+ fname = fst.filename
+ if fname.endswith('/') or fname.startswith('.') or fst.file_size == 0:
+ continue
+ if os.path.splitext(fname)[1].lower() in VALID_IMAGE_TYPES:
+ samples.append((fname))
+ filenames = set(filenames)
+ samples = set(samples)
+ assert filenames.issubset(samples), 'Something wrong with your zip data'
+
+
+
+def draw_box(img, boxes):
+ colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
+ draw = ImageDraw.Draw(img)
+ for bid, box in enumerate(boxes):
+ draw.rectangle([box[0], box[1], box[2], box[3]], outline =colors[bid % len(colors)], width=4)
+ # draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
+ return img
+
+
+
+def to_valid(x0, y0, x1, y1, image_size, min_box_size):
+ valid = True
+
+ if x0>image_size or y0>image_size or x1<0 or y1<0:
+ valid = False # no way to make this box vide, it is completely cropped out
+ return valid, (None, None, None, None)
+
+ x0 = max(x0, 0)
+ y0 = max(y0, 0)
+ x1 = min(x1, image_size)
+ y1 = min(y1, image_size)
+
+ if (x1-x0)*(y1-y0) / (image_size*image_size) < min_box_size:
+ valid = False
+ return valid, (None, None, None, None)
+
+ return valid, (x0, y0, x1, y1)
+
+
+
+
+
+def recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, image_size, min_box_size):
+ """
+ x,y,w,h: the original annotation corresponding to the raw image size.
+ trans_info: what resizing and cropping have been applied to the raw image
+ image_size: what is the final image size
+ """
+
+ x0 = x * trans_info["performed_scale"] - trans_info['crop_x']
+ y0 = y * trans_info["performed_scale"] - trans_info['crop_y']
+ x1 = (x + w) * trans_info["performed_scale"] - trans_info['crop_x']
+ y1 = (y + h) * trans_info["performed_scale"] - trans_info['crop_y']
+
+
+ # at this point, box annotation has been recalculated based on scaling and cropping
+ # but some point may fall off the image_size region (e.g., negative value), thus we
+ # need to clamp them into 0-image_size. But if all points falling outsize of image
+ # region, then we will consider this is an invalid box.
+ valid, (x0, y0, x1, y1) = to_valid(x0, y0, x1, y1, image_size, min_box_size)
+
+ if valid:
+ # we also perform random flip.
+ # Here boxes are valid, and are based on image_size
+ if trans_info["performed_flip"]:
+ x0, x1 = image_size-x1, image_size-x0
+
+ return valid, (x0, y0, x1, y1)
+
+
+
+class BaseDataset(torch.utils.data.Dataset):
+ def __init__(self, image_root, random_crop, random_flip, image_size):
+ super().__init__()
+ self.image_root = image_root
+ self.random_crop = random_crop
+ self.random_flip = random_flip
+ self.image_size = image_size
+ self.use_zip = False
+
+ if image_root[-4::] == 'zip':
+ self.use_zip = True
+ self.zip_dict = {}
+
+ if self.random_crop:
+ assert False, 'NOT IMPLEMENTED'
+
+
+ def fetch_zipfile(self, ziproot):
+ pid = multiprocessing.current_process().pid # get pid of this process.
+ if pid not in self.zip_dict:
+ self.zip_dict[pid] = ZipFile(ziproot)
+ zip_file = self.zip_dict[pid]
+ return zip_file
+
+ def fetch_image(self, filename):
+ if self.use_zip:
+ zip_file = self.fetch_zipfile(self.image_root)
+ image = Image.open( BytesIO(zip_file.read(filename)) ).convert('RGB')
+ return image
+ else:
+ image = Image.open( os.path.join(self.image_root,filename) ).convert('RGB')
+ return image
+
+
+ def vis_getitem_data(self, index=None, out=None, return_tensor=False, name="res.jpg", print_caption=True):
+
+ if out is None:
+ out = self[index]
+
+ img = torchvision.transforms.functional.to_pil_image( out["image"]*0.5+0.5 )
+ canvas = torchvision.transforms.functional.to_pil_image( torch.ones_like(out["image"]) )
+ W, H = img.size
+
+ if print_caption:
+ caption = out["caption"]
+ print(caption)
+ print(" ")
+
+ boxes = []
+ for box in out["boxes"]:
+ x0,y0,x1,y1 = box
+ boxes.append( [float(x0*W), float(y0*H), float(x1*W), float(y1*H)] )
+ img = draw_box(img, boxes)
+
+ if return_tensor:
+ return torchvision.transforms.functional.to_tensor(img)
+ else:
+ img.save(name)
+
+
+ def transform_image(self, pil_image):
+ if self.random_crop:
+ assert False
+ arr = random_crop_arr(pil_image, self.image_size)
+ else:
+ arr, info = center_crop_arr(pil_image, self.image_size)
+
+ info["performed_flip"] = False
+ if self.random_flip and random.random()<0.5:
+ arr = arr[:, ::-1]
+ info["performed_flip"] = True
+
+ arr = arr.astype(np.float32) / 127.5 - 1
+ arr = np.transpose(arr, [2,0,1])
+
+ return torch.tensor(arr), info
+
+
+
+def center_crop_arr(pil_image, image_size):
+ # We are not on a new enough PIL to support the `reducing_gap`
+ # argument, which uses BOX downsampling at powers of two first.
+ # Thus, we do it by hand to improve downsample quality.
+ WW, HH = pil_image.size
+
+ while min(*pil_image.size) >= 2 * image_size:
+ pil_image = pil_image.resize(
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
+ )
+
+ scale = image_size / min(*pil_image.size)
+
+ pil_image = pil_image.resize(
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
+ )
+
+ # at this point, the min of pil_image side is desired image_size
+ performed_scale = image_size / min(WW, HH)
+
+ arr = np.array(pil_image)
+ crop_y = (arr.shape[0] - image_size) // 2
+ crop_x = (arr.shape[1] - image_size) // 2
+
+ info = {"performed_scale":performed_scale, 'crop_y':crop_y, 'crop_x':crop_x, "WW":WW, 'HH':HH}
+
+ return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size], info
+
+
+def random_crop_arr(pil_image, image_size, min_crop_frac=0.8, max_crop_frac=1.0):
+ min_smaller_dim_size = math.ceil(image_size / max_crop_frac)
+ max_smaller_dim_size = math.ceil(image_size / min_crop_frac)
+ smaller_dim_size = random.randrange(min_smaller_dim_size, max_smaller_dim_size + 1)
+
+ # We are not on a new enough PIL to support the `reducing_gap`
+ # argument, which uses BOX downsampling at powers of two first.
+ # Thus, we do it by hand to improve downsample quality.
+ while min(*pil_image.size) >= 2 * smaller_dim_size:
+ pil_image = pil_image.resize(
+ tuple(x // 2 for x in pil_image.size), resample=Image.BOX
+ )
+
+ scale = smaller_dim_size / min(*pil_image.size)
+ pil_image = pil_image.resize(
+ tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC
+ )
+
+ arr = np.array(pil_image)
+ crop_y = random.randrange(arr.shape[0] - image_size + 1)
+ crop_x = random.randrange(arr.shape[1] - image_size + 1)
+ return arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size]
diff --git a/dataset/catalog.py b/dataset/catalog.py
new file mode 100644
index 0000000000000000000000000000000000000000..b622e477dae7cb4ba5c599fa7d2f7220b4311885
--- /dev/null
+++ b/dataset/catalog.py
@@ -0,0 +1,72 @@
+import os
+
+class DatasetCatalog:
+ def __init__(self, ROOT, which_embedder):
+ assert which_embedder in ['clip', 'bert']
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
+
+
+ self.VGGrounding = {
+ "target": "dataset.tsv_dataset.TSVDataset",
+ "train_params": dict(
+ tsv_path=os.path.join(ROOT,'GROUNDING/gqa/tsv/train-00.tsv'),
+ )
+ }
+
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
+
+
+ self.FlickrGrounding = {
+ "target": "dataset.tsv_dataset.TSVDataset",
+ "train_params":dict(
+ tsv_path=os.path.join(ROOT,'GROUNDING/flickr30k/tsv/train-00.tsv'),
+ )
+ }
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
+
+ self.SBUGrounding = {
+ "target": "dataset.tsv_dataset.TSVDataset",
+ "train_params":dict(
+ tsv_path=os.path.join(ROOT,'GROUNDING/SBU/tsv/train-00.tsv'),
+ )
+ }
+
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
+
+
+ self.CC3MGrounding = {
+ "target": "dataset.tsv_dataset.TSVDataset",
+ "train_params":dict(
+ tsv_path=os.path.join(ROOT,'GROUNDING/CC3M/tsv/train-00.tsv'),
+ )
+ }
+
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
+
+
+ self.CC12MGrounding = {
+ "target": "dataset.tsv_dataset.TSVDataset",
+ "train_params":dict(
+ tsv_path=os.path.join(ROOT,'GROUNDING/CC12M/tsv/train-00.tsv'),
+ )
+ }
+
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #
+
+ # temp = 'category_embedding_clip.pth' if which_embedder == 'clip' else 'category_embedding_bert.pth'
+ # obj365_category_embedding_path = os.path.join(ROOT, 'OBJECTS365', temp)
+
+ self.Obj365Detection = {
+ "target": "dataset.tsv_dataset.TSVDataset",
+ "train_params":dict(
+ tsv_path=os.path.join(ROOT,'OBJECTS365/tsv/train-00.tsv'),
+ ),
+ }
+
+
diff --git a/dataset/cd_dataset.py b/dataset/cd_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..0627329bda44a15c6821fc477bbde45acfe86a2f
--- /dev/null
+++ b/dataset/cd_dataset.py
@@ -0,0 +1,250 @@
+import json, os, random, math
+from collections import defaultdict
+from copy import deepcopy
+
+import torch
+from torch.utils.data import Dataset
+import torchvision.transforms as transforms
+
+import numpy as np
+from PIL import Image
+from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
+from io import BytesIO
+
+
+
+def not_in_at_all(list1, list2):
+ for a in list1:
+ if a in list2:
+ return False
+ return True
+
+
+def clean_annotations(annotations):
+ for anno in annotations:
+ anno.pop("segmentation", None)
+ anno.pop("area", None)
+ anno.pop("iscrowd", None)
+ # anno.pop("id", None)
+
+
+def make_a_sentence(obj_names, clean=False):
+
+ if clean:
+ obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
+
+ caption = ""
+ tokens_positive = []
+ for obj_name in obj_names:
+ start_len = len(caption)
+ caption += obj_name
+ end_len = len(caption)
+ caption += ", "
+ tokens_positive.append(
+ [[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
+ )
+ caption = caption[:-2] # remove last ", "
+
+ return caption #, tokens_positive
+
+
+def check_all_have_same_images(instances_data, stuff_data, caption_data):
+ if stuff_data is not None:
+ assert instances_data["images"] == stuff_data["images"]
+ if caption_data is not None:
+ assert instances_data["images"] == caption_data["images"]
+
+
+class CDDataset(BaseDataset):
+ "CD: Caption Detection"
+ def __init__(self,
+ image_root,
+ category_embedding_path,
+ instances_json_path = None,
+ stuff_json_path = None,
+ caption_json_path = None,
+ prob_real_caption = 0,
+ fake_caption_type = 'empty',
+ image_size=256,
+ max_images=None,
+ min_box_size=0.01,
+ max_boxes_per_image=8,
+ include_other=False,
+ random_crop = False,
+ random_flip = True,
+ ):
+ super().__init__(random_crop, random_flip, image_size)
+
+ self.image_root = image_root
+ self.category_embedding_path = category_embedding_path
+ self.instances_json_path = instances_json_path
+ self.stuff_json_path = stuff_json_path
+ self.caption_json_path = caption_json_path
+ self.prob_real_caption = prob_real_caption
+ self.fake_caption_type = fake_caption_type
+ self.max_images = max_images
+ self.min_box_size = min_box_size
+ self.max_boxes_per_image = max_boxes_per_image
+ self.include_other = include_other
+
+
+ assert fake_caption_type in ["empty", "made"]
+ if prob_real_caption > 0:
+ assert caption_json_path is not None, "caption json must be given"
+
+
+ # Load all jsons
+ with open(instances_json_path, 'r') as f:
+ instances_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
+ clean_annotations(instances_data["annotations"])
+ self.instances_data = instances_data
+
+ self.stuff_data = None
+ if stuff_json_path is not None:
+ with open(stuff_json_path, 'r') as f:
+ stuff_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
+ clean_annotations(stuff_data["annotations"])
+ self.stuff_data = stuff_data
+
+ self.captions_data = None
+ if caption_json_path is not None:
+ with open(caption_json_path, 'r') as f:
+ captions_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
+ clean_annotations(captions_data["annotations"])
+ self.captions_data = captions_data
+
+
+ # Load preprocessed name embedding
+ self.category_embeddings = torch.load(category_embedding_path)
+ self.embedding_len = list( self.category_embeddings.values() )[0].shape[0]
+
+
+ # Misc
+ self.image_ids = [] # main list for selecting images
+ self.image_id_to_filename = {} # file names used to read image
+ check_all_have_same_images(self.instances_data, self.stuff_data, self.captions_data)
+ for image_data in self.instances_data['images']:
+ image_id = image_data['id']
+ filename = image_data['file_name']
+ self.image_ids.append(image_id)
+ self.image_id_to_filename[image_id] = filename
+
+
+ # All category names (including things and stuff)
+ self.object_idx_to_name = {}
+ for category_data in self.instances_data['categories']:
+ self.object_idx_to_name[category_data['id']] = category_data['name']
+ if self.stuff_data is not None:
+ for category_data in self.stuff_data['categories']:
+ self.object_idx_to_name[category_data['id']] = category_data['name']
+
+
+ # Add object data from instances and stuff
+ self.image_id_to_objects = defaultdict(list)
+ self.select_objects( self.instances_data['annotations'] )
+ if self.stuff_data is not None:
+ self.select_objects( self.stuff_data['annotations'] )
+
+ # Add caption data
+ if self.captions_data is not None:
+ self.image_id_to_captions = defaultdict(list)
+ self.select_captions( self.captions_data['annotations'] )
+
+ # Check if all filenames can be found in the zip file
+ # all_filenames = [self.image_id_to_filename[idx] for idx in self.image_ids]
+ # check_filenames_in_zipdata(all_filenames, image_root)
+
+
+ def select_objects(self, annotations):
+ for object_anno in annotations:
+ image_id = object_anno['image_id']
+ object_name = self.object_idx_to_name[object_anno['category_id']]
+ other_ok = object_name != 'other' or self.include_other
+ if other_ok:
+ self.image_id_to_objects[image_id].append(object_anno)
+
+
+ def select_captions(self, annotations):
+ for caption_data in annotations:
+ image_id = caption_data['image_id']
+ self.image_id_to_captions[image_id].append(caption_data)
+
+
+ def total_images(self):
+ return len(self)
+
+
+ def __getitem__(self, index):
+ if self.max_boxes_per_image > 99:
+ assert False, "Are you sure setting such large number of boxes?"
+
+ out = {}
+
+ image_id = self.image_ids[index]
+ out['id'] = image_id
+
+ # Image
+ filename = self.image_id_to_filename[image_id]
+ image = self.fetch_image(filename)
+ #WW, HH = image.size
+ image_tensor, trans_info = self.transform_image(image)
+ out["image"] = image_tensor
+
+
+ # Select valid boxes after cropping (center or random)
+ this_image_obj_annos = deepcopy(self.image_id_to_objects[image_id])
+ areas = []
+ all_obj_names = []
+ all_boxes = []
+ all_masks = []
+ all_positive_embeddings = []
+ for object_anno in this_image_obj_annos:
+
+ x, y, w, h = object_anno['bbox']
+ valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
+
+ if valid:
+ areas.append( (x1-x0)*(y1-y0) )
+ obj_name = self.object_idx_to_name[ object_anno['category_id'] ]
+ all_obj_names.append(obj_name)
+ all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
+ all_masks.append(1)
+ all_positive_embeddings.append( self.category_embeddings[obj_name] )
+
+ wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
+ wanted_idxs = wanted_idxs[0:self.max_boxes_per_image]
+ obj_names = [] # used for making a sentence
+ boxes = torch.zeros(self.max_boxes_per_image, 4)
+ masks = torch.zeros(self.max_boxes_per_image)
+ positive_embeddings = torch.zeros(self.max_boxes_per_image, self.embedding_len)
+ for i, idx in enumerate(wanted_idxs):
+ obj_names.append( all_obj_names[idx] )
+ boxes[i] = all_boxes[idx]
+ masks[i] = all_masks[idx]
+ positive_embeddings[i] = all_positive_embeddings[idx]
+
+ # Caption
+ if random.uniform(0, 1) < self.prob_real_caption:
+ caption_data = self.image_id_to_captions[image_id]
+ idx = random.randint(0, len(caption_data)-1 )
+ caption = caption_data[idx]["caption"]
+ else:
+ if self.fake_caption_type == "empty":
+ caption = ""
+ else:
+ caption = make_a_sentence(obj_names, clean=True)
+
+
+ out["caption"] = caption
+ out["boxes"] = boxes
+ out["masks"] = masks
+ out["positive_embeddings"] = positive_embeddings
+
+ return out
+
+
+ def __len__(self):
+ if self.max_images is None:
+ return len(self.image_ids)
+ return min(len(self.image_ids), self.max_images)
+
diff --git a/dataset/concat_dataset.py b/dataset/concat_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..df637663567a8c74673de9361950a6d663357fa0
--- /dev/null
+++ b/dataset/concat_dataset.py
@@ -0,0 +1,65 @@
+from .catalog import DatasetCatalog
+from ldm.util import instantiate_from_config
+import torch
+
+
+
+
+class ConCatDataset():
+ def __init__(self, dataset_name_list, ROOT, which_embedder, train=True, repeats=None):
+ self.datasets = []
+ cul_previous_dataset_length = 0
+ offset_map = []
+ which_dataset = []
+
+ if repeats is None:
+ repeats = [1] * len(dataset_name_list)
+ else:
+ assert len(repeats) == len(dataset_name_list)
+
+
+ Catalog = DatasetCatalog(ROOT, which_embedder)
+ for dataset_idx, (dataset_name, yaml_params) in enumerate(dataset_name_list.items()):
+ repeat = repeats[dataset_idx]
+
+ dataset_dict = getattr(Catalog, dataset_name)
+
+ target = dataset_dict['target']
+ params = dataset_dict['train_params'] if train else dataset_dict['val_params']
+ if yaml_params is not None:
+ params.update(yaml_params)
+ dataset = instantiate_from_config( dict(target=target, params=params) )
+
+ self.datasets.append(dataset)
+ for _ in range(repeat):
+ offset_map.append( torch.ones(len(dataset))*cul_previous_dataset_length )
+ which_dataset.append( torch.ones(len(dataset))*dataset_idx )
+ cul_previous_dataset_length += len(dataset)
+ offset_map = torch.cat(offset_map, dim=0).long()
+ self.total_length = cul_previous_dataset_length
+
+ self.mapping = torch.arange(self.total_length) - offset_map
+ self.which_dataset = torch.cat(which_dataset, dim=0).long()
+
+
+ def total_images(self):
+ count = 0
+ for dataset in self.datasets:
+ print(dataset.total_images())
+ count += dataset.total_images()
+ return count
+
+
+
+ def __getitem__(self, idx):
+ dataset = self.datasets[ self.which_dataset[idx] ]
+ return dataset[ self.mapping[idx] ]
+
+
+ def __len__(self):
+ return self.total_length
+
+
+
+
+
diff --git a/dataset/grounding_dataset.py b/dataset/grounding_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b1fa74fc948466bd3d1a522025413ee5224577a
--- /dev/null
+++ b/dataset/grounding_dataset.py
@@ -0,0 +1,205 @@
+from tkinter.messagebox import NO
+import torch
+import json
+from collections import defaultdict
+from PIL import Image, ImageDraw
+from copy import deepcopy
+import os
+import torchvision.transforms as transforms
+import torchvision
+from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
+from io import BytesIO
+import random
+
+def check_unique(images, fields):
+ for field in fields:
+ temp_list = []
+ for img_info in images:
+ temp_list.append(img_info[field])
+ assert len(set(temp_list)) == len(temp_list), field
+
+def clean_data(data):
+ for data_info in data:
+ data_info.pop("original_img_id", None)
+ data_info.pop("original_id", None)
+ data_info.pop("sentence_id", None) # sentence id for each image (multiple sentences for one image)
+ data_info.pop("dataset_name", None)
+ data_info.pop("data_source", None)
+ data_info["data_id"] = data_info.pop("id")
+
+
+def clean_annotations(annotations):
+ for anno_info in annotations:
+ anno_info.pop("iscrowd", None) # I have checked that all 0 for flickr, vg, coco
+ anno_info.pop("category_id", None) # I have checked that all 1 for flickr vg. This is not always 1 for coco, but I do not think we need this annotation
+ anno_info.pop("area", None)
+ # anno_info.pop("id", None)
+ anno_info["data_id"] = anno_info.pop("image_id")
+
+
+def draw_box(img, boxes):
+ draw = ImageDraw.Draw(img)
+ for box in boxes:
+ draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
+ return img
+
+
+def xyhw2xyxy(box):
+ x0, y0, w, h = box
+ return [ x0, y0, x0+w, y0+h ]
+
+
+
+class GroundingDataset(BaseDataset):
+ def __init__(self,
+ image_root,
+ json_path,
+ annotation_embedding_path,
+ prob_real_caption=1,
+ image_size=256,
+ min_box_size=0.01,
+ max_boxes_per_data=8,
+ max_images=None, # set as 30K used to eval
+ random_crop = False,
+ random_flip = True,
+ ):
+ super().__init__(image_root, random_crop, random_flip, image_size)
+ self.image_root = image_root
+ self.json_path = json_path
+ self.annotation_embedding_path = annotation_embedding_path
+ self.prob_real_caption = prob_real_caption
+ self.min_box_size = min_box_size
+ self.max_boxes_per_data = max_boxes_per_data
+ self.max_images = max_images
+
+
+ # Load raw data
+ with open(json_path, 'r') as f:
+ json_raw = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
+ self.data = json_raw["images"] # donot name it images, which is misleading
+ self.annotations = json_raw["annotations"]
+
+
+ # Load preprocessed name embedding
+ if 'bert' in annotation_embedding_path:
+ self.embedding_len = 1280
+ elif 'clip' in annotation_embedding_path:
+ self.embedding_len = 768
+ else:
+ assert False
+
+
+ # clean data and annotation
+ check_unique( self.data, ['id'] )
+ check_unique( self.annotations, ['id'] )
+ clean_data(self.data)
+ clean_annotations(self.annotations)
+ self.data_id_list = [ datum['data_id'] for datum in self.data ]
+ self.data = { datum['data_id']:datum for datum in self.data } # map self.data from a list into a dict
+
+
+ # data point to its annotation mapping
+ self.data_id_to_annos = defaultdict(list)
+ for anno in self.annotations:
+ self.data_id_to_annos[ anno["data_id"] ].append(anno)
+
+
+
+ # These are not used that offen, but are useful in some cases
+ self.file_names = [] # all training images
+ self.file_name_to_data_ids = defaultdict(list) # for each image, there are multiple data points (captions)
+ for data_id in self.data_id_list:
+ fine_name = self.data[data_id]["file_name"]
+ self.file_names.append(fine_name)
+ self.file_name_to_data_ids[fine_name].append(data_id)
+ self.file_names = list(set(self.file_names))
+
+
+ if self.max_images is not None:
+ "This is only used as COCO2017P evulation, when we set max_images as 30k"
+ assert False, 'I have commented out the following code to save cpu memory'
+ # new_data_id_list = []
+ # new_file_name_to_data_ids = defaultdict(list)
+ # self.file_names = self.file_names[0:self.max_images]
+ # for file_name in self.file_names:
+ # data_id = self.file_name_to_data_ids[file_name][0]
+ # new_data_id_list.append(data_id)
+ # new_file_name_to_data_ids[file_name].append(data_id)
+ # self.data_id_list = new_data_id_list
+ # self.file_name_to_data_ids = new_file_name_to_data_ids
+
+
+ # Check if all filenames can be found in the zip file
+ # all_filenames = [self.data[idx]['file_name'] for idx in self.data_id_list ]
+ # check_filenames_in_zipdata(all_filenames, image_root)
+
+
+ def total_images(self):
+ return len(self.file_names)
+
+
+ def __getitem__(self, index):
+ if self.max_boxes_per_data > 99:
+ assert False, "Are you sure setting such large number of boxes?"
+
+ out = {}
+
+ data_id = self.data_id_list[index]
+ out['id'] = data_id
+
+
+ # Image and caption
+ file_name = self.data[data_id]['file_name']
+ image = self.fetch_image(file_name)
+ image_tensor, trans_info = self.transform_image(image)
+ out["image"] = image_tensor
+
+ if random.uniform(0, 1) < self.prob_real_caption:
+ out["caption"] = self.data[data_id]["caption"]
+ else:
+ out["caption"] = ""
+
+
+
+ annos = deepcopy(self.data_id_to_annos[data_id])
+ areas = []
+ all_boxes = []
+ all_masks = []
+ all_positive_embeddings = []
+
+
+ for anno in annos:
+
+ x, y, w, h = anno['bbox']
+ valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
+
+ if valid:
+ areas.append( (x1-x0)*(y1-y0) )
+ all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
+ all_masks.append(1)
+ all_positive_embeddings.append( torch.load(os.path.join(self.annotation_embedding_path,str(anno["id"])), map_location='cpu' ) )
+
+ wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
+ wanted_idxs = wanted_idxs[0:self.max_boxes_per_data]
+
+ boxes = torch.zeros(self.max_boxes_per_data, 4)
+ masks = torch.zeros(self.max_boxes_per_data)
+ positive_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
+ for i, idx in enumerate(wanted_idxs):
+ boxes[i] = all_boxes[idx]
+ masks[i] = all_masks[idx]
+ positive_embeddings[i] = all_positive_embeddings[idx]
+
+
+ out["boxes"] = boxes
+ out["masks"] = masks
+ out["positive_embeddings"] = positive_embeddings
+
+ return out
+
+
+
+ def __len__(self):
+ return len(self.data_id_list)
+
+
diff --git a/dataset/layout_dataset.py b/dataset/layout_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..8d2b4dc73e8c194e92725faeab368f0951f6f7e8
--- /dev/null
+++ b/dataset/layout_dataset.py
@@ -0,0 +1,237 @@
+import json, os, random, math
+from collections import defaultdict
+from copy import deepcopy
+
+import torch
+from torch.utils.data import Dataset
+import torchvision.transforms as transforms
+
+import numpy as np
+from PIL import Image, ImageOps
+from .base_dataset import BaseDataset, check_filenames_in_zipdata
+from io import BytesIO
+
+
+
+
+def clean_annotations(annotations):
+ for anno in annotations:
+ anno.pop("segmentation", None)
+ anno.pop("area", None)
+ anno.pop("iscrowd", None)
+ anno.pop("id", None)
+
+
+def make_a_sentence(obj_names, clean=False):
+
+ if clean:
+ obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
+
+ caption = ""
+ tokens_positive = []
+ for obj_name in obj_names:
+ start_len = len(caption)
+ caption += obj_name
+ end_len = len(caption)
+ caption += ", "
+ tokens_positive.append(
+ [[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
+ )
+ caption = caption[:-2] # remove last ", "
+
+ return caption #, tokens_positive
+
+
+class LayoutDataset(BaseDataset):
+ """
+ Note: this dataset can somehow be achieved in cd_dataset.CDDataset
+ Since if you donot set prob_real_caption=0 in CDDataset, then that
+ dataset will only use detection annotations. However, in that dataset,
+ we do not remove images but remove boxes.
+
+ However, in layout2img works, people will just resize raw image data into 256*256,
+ thus they pre-calculate box size and apply min_box_size before min/max_boxes_per_image.
+ And then they will remove images if does not follow the rule.
+
+ These two different methods will lead to different number of training/val images.
+ Thus this dataset here is only for layout2img.
+
+ """
+ def __init__(self,
+ image_root,
+ instances_json_path,
+ stuff_json_path,
+ category_embedding_path,
+ fake_caption_type = 'empty',
+ image_size=256,
+ max_samples=None,
+ min_box_size=0.02,
+ min_boxes_per_image=3,
+ max_boxes_per_image=8,
+ include_other=False,
+ random_flip=True
+ ):
+ super().__init__(random_crop=None, random_flip=None, image_size=None) # we only use vis_getitem func in BaseDataset, donot use the others.
+
+ assert fake_caption_type in ['empty', 'made']
+ self.image_root = image_root
+ self.instances_json_path = instances_json_path
+ self.stuff_json_path = stuff_json_path
+ self.category_embedding_path = category_embedding_path
+ self.fake_caption_type = fake_caption_type
+ self.image_size = image_size
+ self.max_samples = max_samples
+ self.min_box_size = min_box_size
+ self.min_boxes_per_image = min_boxes_per_image
+ self.max_boxes_per_image = max_boxes_per_image
+ self.include_other = include_other
+ self.random_flip = random_flip
+
+
+ self.transform = transforms.Compose([transforms.Resize( (image_size, image_size) ),
+ transforms.ToTensor(),
+ transforms.Lambda(lambda t: (t * 2) - 1) ])
+
+ # Load all jsons
+ with open(instances_json_path, 'r') as f:
+ instances_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
+ clean_annotations(instances_data["annotations"])
+ self.instances_data = instances_data
+
+ with open(stuff_json_path, 'r') as f:
+ stuff_data = json.load(f) # keys: 'info', 'images', 'licenses', 'categories', 'annotations'
+ clean_annotations(stuff_data["annotations"])
+ self.stuff_data = stuff_data
+
+
+ # Load preprocessed name embedding
+ self.category_embeddings = torch.load(category_embedding_path)
+ self.embedding_len = list( self.category_embeddings.values() )[0].shape[0]
+
+
+ # Misc
+ self.image_ids = [] # main list for selecting images
+ self.image_id_to_filename = {} # file names used to read image
+ self.image_id_to_size = {} # original size of this image
+ assert instances_data['images'] == stuff_data["images"]
+ for image_data in instances_data['images']:
+ image_id = image_data['id']
+ filename = image_data['file_name']
+ width = image_data['width']
+ height = image_data['height']
+ self.image_ids.append(image_id)
+ self.image_id_to_filename[image_id] = filename
+ self.image_id_to_size[image_id] = (width, height)
+
+ # All category names (including things and stuff)
+ self.things_id_list = []
+ self.stuff_id_list = []
+ self.object_idx_to_name = {}
+ for category_data in instances_data['categories']:
+ self.things_id_list.append( category_data['id'] )
+ self.object_idx_to_name[category_data['id']] = category_data['name']
+ for category_data in stuff_data['categories']:
+ self.stuff_id_list.append( category_data['id'] )
+ self.object_idx_to_name[category_data['id']] = category_data['name']
+ self.all_categories = [ self.object_idx_to_name.get(k, None) for k in range(183+1) ]
+
+
+ # Add object data from instances and stuff
+ self.image_id_to_objects = defaultdict(list)
+ self.select_objects( instances_data['annotations'] )
+ self.select_objects( stuff_data['annotations'] )
+
+
+ # Prune images that have too few or too many objects
+ new_image_ids = []
+ for image_id in self.image_ids:
+ num_objs = len(self.image_id_to_objects[image_id])
+ if self.min_boxes_per_image <= num_objs <= self.max_boxes_per_image:
+ new_image_ids.append(image_id)
+ self.image_ids = new_image_ids
+
+
+ # Check if all filenames can be found in the zip file
+ all_filenames = [self.image_id_to_filename[idx] for idx in self.image_ids]
+ check_filenames_in_zipdata(all_filenames, image_root)
+
+
+
+ def select_objects(self, annotations):
+ for object_anno in annotations:
+ image_id = object_anno['image_id']
+ _, _, w, h = object_anno['bbox']
+ W, H = self.image_id_to_size[image_id]
+ box_area = (w * h) / (W * H)
+ box_ok = box_area > self.min_box_size
+ object_name = self.object_idx_to_name[object_anno['category_id']]
+ other_ok = object_name != 'other' or self.include_other
+ if box_ok and other_ok:
+ self.image_id_to_objects[image_id].append(object_anno)
+
+
+ def total_images(self):
+ return len(self)
+
+
+ def __getitem__(self, index):
+ if self.max_boxes_per_image > 99:
+ assert False, "Are you sure setting such large number of boxes?"
+
+ out = {}
+
+ image_id = self.image_ids[index]
+ out['id'] = image_id
+
+ flip = self.random_flip and random.random()<0.5
+
+ # Image
+ filename = self.image_id_to_filename[image_id]
+ zip_file = self.fetch_zipfile(self.image_root)
+ image = Image.open(BytesIO(zip_file.read(filename))).convert('RGB')
+ WW, HH = image.size
+ if flip:
+ image = ImageOps.mirror(image)
+ out["image"] = self.transform(image)
+
+ this_image_obj_annos = deepcopy(self.image_id_to_objects[image_id])
+
+ # Make a sentence
+ obj_names = [] # used for make a sentence
+ boxes = torch.zeros(self.max_boxes_per_image, 4)
+ masks = torch.zeros(self.max_boxes_per_image)
+ positive_embeddings = torch.zeros(self.max_boxes_per_image, self.embedding_len)
+ for idx, object_anno in enumerate(this_image_obj_annos):
+ obj_name = self.object_idx_to_name[ object_anno['category_id'] ]
+ obj_names.append(obj_name)
+ x, y, w, h = object_anno['bbox']
+ x0 = x / WW
+ y0 = y / HH
+ x1 = (x + w) / WW
+ y1 = (y + h) / HH
+ if flip:
+ x0, x1 = 1-x1, 1-x0
+ boxes[idx] = torch.tensor([x0,y0,x1,y1])
+ masks[idx] = 1
+ positive_embeddings[idx] = self.category_embeddings[obj_name]
+
+ if self.fake_caption_type == 'empty':
+ caption = ""
+ else:
+ caption = make_a_sentence(obj_names, clean=True)
+
+ out["caption"] = caption
+ out["boxes"] = boxes
+ out["masks"] = masks
+ out["positive_embeddings"] = positive_embeddings
+
+
+ return out
+
+
+ def __len__(self):
+ if self.max_samples is None:
+ return len(self.image_ids)
+ return min(len(self.image_ids), self.max_samples)
+
+
diff --git a/dataset/tsv.py b/dataset/tsv.py
new file mode 100644
index 0000000000000000000000000000000000000000..dfbc4c4d0c1ac4b833b8229a952c1e2fe03bd6f1
--- /dev/null
+++ b/dataset/tsv.py
@@ -0,0 +1,212 @@
+import os
+import os.path as op
+import gc
+import json
+from typing import List
+import logging
+
+try:
+ from .blob_storage import BlobStorage, disk_usage
+except:
+ class BlobStorage:
+ pass
+
+
+def generate_lineidx(filein: str, idxout: str) -> None:
+ idxout_tmp = idxout + '.tmp'
+ with open(filein, 'r') as tsvin, open(idxout_tmp, 'w') as tsvout:
+ fsize = os.fstat(tsvin.fileno()).st_size
+ fpos = 0
+ while fpos != fsize:
+ tsvout.write(str(fpos) + "\n")
+ tsvin.readline()
+ fpos = tsvin.tell()
+ os.rename(idxout_tmp, idxout)
+
+
+def read_to_character(fp, c):
+ result = []
+ while True:
+ s = fp.read(32)
+ assert s != ''
+ if c in s:
+ result.append(s[: s.index(c)])
+ break
+ else:
+ result.append(s)
+ return ''.join(result)
+
+
+class TSVFile(object):
+ def __init__(self,
+ tsv_file: str,
+ if_generate_lineidx: bool = False,
+ lineidx: str = None,
+ class_selector: List[str] = None,
+ blob_storage: BlobStorage = None):
+ self.tsv_file = tsv_file
+ self.lineidx = op.splitext(tsv_file)[0] + '.lineidx' \
+ if not lineidx else lineidx
+ self.linelist = op.splitext(tsv_file)[0] + '.linelist'
+ self.chunks = op.splitext(tsv_file)[0] + '.chunks'
+ self._fp = None
+ self._lineidx = None
+ self._sample_indices = None
+ self._class_boundaries = None
+ self._class_selector = class_selector
+ self._blob_storage = blob_storage
+ self._len = None
+ # the process always keeps the process which opens the file.
+ # If the pid is not equal to the currrent pid, we will re-open the file.
+ self.pid = None
+ # generate lineidx if not exist
+ if not op.isfile(self.lineidx) and if_generate_lineidx:
+ generate_lineidx(self.tsv_file, self.lineidx)
+
+ def __del__(self):
+ self.gcidx()
+ if self._fp:
+ self._fp.close()
+ # physically remove the tsv file if it is retrieved by BlobStorage
+ if self._blob_storage and 'azcopy' in self.tsv_file and os.path.exists(self.tsv_file):
+ try:
+ original_usage = disk_usage('/')
+ os.remove(self.tsv_file)
+ logging.info("Purged %s (disk usage: %.2f%% => %.2f%%)" %
+ (self.tsv_file, original_usage, disk_usage('/') * 100))
+ except:
+ # Known issue: multiple threads attempting to delete the file will raise a FileNotFound error.
+ # TODO: try Threadling.Lock to better handle the race condition
+ pass
+
+ def __str__(self):
+ return "TSVFile(tsv_file='{}')".format(self.tsv_file)
+
+ def __repr__(self):
+ return str(self)
+
+ def gcidx(self):
+ logging.debug('Run gc collect')
+ self._lineidx = None
+ self._sample_indices = None
+ #self._class_boundaries = None
+ return gc.collect()
+
+ def get_class_boundaries(self):
+ return self._class_boundaries
+
+ def num_rows(self, gcf=False):
+ if (self._len is None):
+ self._ensure_lineidx_loaded()
+ retval = len(self._sample_indices)
+
+ if (gcf):
+ self.gcidx()
+
+ self._len = retval
+
+ return self._len
+
+ def seek(self, idx: int):
+ self._ensure_tsv_opened()
+ self._ensure_lineidx_loaded()
+ try:
+ pos = self._lineidx[self._sample_indices[idx]]
+ except:
+ logging.info('=> {}-{}'.format(self.tsv_file, idx))
+ raise
+ self._fp.seek(pos)
+ return [s.strip() for s in self._fp.readline().split('\t')]
+
+ def seek_first_column(self, idx: int):
+ self._ensure_tsv_opened()
+ self._ensure_lineidx_loaded()
+ pos = self._lineidx[idx]
+ self._fp.seek(pos)
+ return read_to_character(self._fp, '\t')
+
+ def get_key(self, idx: int):
+ return self.seek_first_column(idx)
+
+ def __getitem__(self, index: int):
+ return self.seek(index)
+
+ def __len__(self):
+ return self.num_rows()
+
+ def _ensure_lineidx_loaded(self):
+ if self._lineidx is None:
+ logging.debug('=> loading lineidx: {}'.format(self.lineidx))
+ with open(self.lineidx, 'r') as fp:
+ lines = fp.readlines()
+ lines = [line.strip() for line in lines]
+ self._lineidx = [int(line) for line in lines]
+
+ # read the line list if exists
+ linelist = None
+ if op.isfile(self.linelist):
+ with open(self.linelist, 'r') as fp:
+ linelist = sorted(
+ [
+ int(line.strip())
+ for line in fp.readlines()
+ ]
+ )
+
+ if op.isfile(self.chunks):
+ self._sample_indices = []
+ self._class_boundaries = []
+ class_boundaries = json.load(open(self.chunks, 'r'))
+ for class_name, boundary in class_boundaries.items():
+ start = len(self._sample_indices)
+ if class_name in self._class_selector:
+ for idx in range(boundary[0], boundary[1] + 1):
+ # NOTE: potentially slow when linelist is long, try to speed it up
+ if linelist and idx not in linelist:
+ continue
+ self._sample_indices.append(idx)
+ end = len(self._sample_indices)
+ self._class_boundaries.append((start, end))
+ else:
+ if linelist:
+ self._sample_indices = linelist
+ else:
+ self._sample_indices = list(range(len(self._lineidx)))
+
+ def _ensure_tsv_opened(self):
+ if self._fp is None:
+ if self._blob_storage:
+ self._fp = self._blob_storage.open(self.tsv_file)
+ else:
+ self._fp = open(self.tsv_file, 'r')
+ self.pid = os.getpid()
+
+ if self.pid != os.getpid():
+ logging.debug('=> re-open {} because the process id changed'.format(self.tsv_file))
+ self._fp = open(self.tsv_file, 'r')
+ self.pid = os.getpid()
+
+
+class TSVWriter(object):
+ def __init__(self, tsv_file):
+ self.tsv_file = tsv_file
+ self.lineidx_file = op.splitext(tsv_file)[0] + '.lineidx'
+ self.tsv_file_tmp = self.tsv_file + '.tmp'
+ self.lineidx_file_tmp = self.lineidx_file + '.tmp'
+
+ self.tsv_fp = open(self.tsv_file_tmp, 'w')
+ self.lineidx_fp = open(self.lineidx_file_tmp, 'w')
+
+ self.idx = 0
+
+ def write(self, values, sep='\t'):
+ v = '{0}\n'.format(sep.join(map(str, values)))
+ self.tsv_fp.write(v)
+ self.lineidx_fp.write(str(self.idx) + '\n')
+ self.idx = self.idx + len(v)
+
+ def close(self):
+ self.tsv_fp.close()
+ self.lineidx_fp.close()
+ os.rename(self.tsv_file_tmp, self.tsv_file)
+ os.rename(self.lineidx_file_tmp, self.lineidx_file)
diff --git a/dataset/tsv_dataset.py b/dataset/tsv_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..0c96c9b5f92e1088f02bbb0646144c3164677938
--- /dev/null
+++ b/dataset/tsv_dataset.py
@@ -0,0 +1,326 @@
+from tkinter.messagebox import NO
+import torch
+import json
+from collections import defaultdict
+from PIL import Image, ImageDraw
+from copy import deepcopy
+import os
+import torchvision.transforms as transforms
+import torchvision
+from .base_dataset import BaseDataset, check_filenames_in_zipdata, recalculate_box_and_verify_if_valid
+from io import BytesIO
+import random
+
+from .tsv import TSVFile
+
+from io import BytesIO
+import base64
+from PIL import Image
+import numpy as np
+
+
+def decode_base64_to_pillow(image_b64):
+ return Image.open(BytesIO(base64.b64decode(image_b64))).convert('RGB')
+
+def decode_tensor_from_string(arr_str, use_tensor=True):
+ arr = np.frombuffer(base64.b64decode(arr_str), dtype='float32')
+ if use_tensor:
+ arr = torch.from_numpy(arr)
+ return arr
+
+def decode_item(item):
+ item = json.loads(item)
+ item['image'] = decode_base64_to_pillow(item['image'])
+
+ for anno in item['annos']:
+ anno['image_embedding_before'] = decode_tensor_from_string(anno['image_embedding_before'])
+ anno['text_embedding_before'] = decode_tensor_from_string(anno['text_embedding_before'])
+ anno['image_embedding_after'] = decode_tensor_from_string(anno['image_embedding_after'])
+ anno['text_embedding_after'] = decode_tensor_from_string(anno['text_embedding_after'])
+ return item
+
+def check_unique(images, fields):
+ for field in fields:
+ temp_list = []
+ for img_info in images:
+ temp_list.append(img_info[field])
+ assert len(set(temp_list)) == len(temp_list), field
+
+def clean_data(data):
+ for data_info in data:
+ data_info.pop("original_img_id", None)
+ data_info.pop("original_id", None)
+ data_info.pop("sentence_id", None) # sentence id for each image (multiple sentences for one image)
+ data_info.pop("dataset_name", None)
+ data_info.pop("data_source", None)
+ data_info["data_id"] = data_info.pop("id")
+
+
+def clean_annotations(annotations):
+ for anno_info in annotations:
+ anno_info.pop("iscrowd", None) # I have checked that all 0 for flickr, vg, coco
+ anno_info.pop("category_id", None) # I have checked that all 1 for flickr vg. This is not always 1 for coco, but I do not think we need this annotation
+ anno_info.pop("area", None)
+ # anno_info.pop("id", None)
+ anno_info["data_id"] = anno_info.pop("image_id")
+
+
+def draw_box(img, boxes):
+ draw = ImageDraw.Draw(img)
+ for box in boxes:
+ draw.rectangle([box[0], box[1], box[2], box[3]], outline ="red", width=2) # x0 y0 x1 y1
+ return img
+
+
+def xyhw2xyxy(box):
+ x0, y0, w, h = box
+ return [ x0, y0, x0+w, y0+h ]
+
+
+def make_a_sentence(obj_names, clean=False):
+
+ if clean:
+ obj_names = [ name[:-6] if ("-other" in name) else name for name in obj_names]
+
+ caption = ""
+ tokens_positive = []
+ for obj_name in obj_names:
+ start_len = len(caption)
+ caption += obj_name
+ end_len = len(caption)
+ caption += ", "
+ tokens_positive.append(
+ [[start_len, end_len]] # in real caption, positive tokens can be disjoint, thus using list of list
+ )
+ caption = caption[:-2] # remove last ", "
+
+ return caption #, tokens_positive
+
+
+def mask_for_random_drop_text_or_image_feature(masks, random_drop_embedding):
+ """
+ input masks tell how many valid grounding tokens for this image
+ e.g., 1,1,1,1,0,0,0,0,0,0...
+
+ If random_drop_embedding=both. we will random drop either image or
+ text feature for each token,
+ but we always make sure there is at least one feature used.
+ In other words, the following masks are not valid
+ (because for the second obj, no feature at all):
+ image: 1,0,1,1,0,0,0,0,0
+ text: 1,0,0,0,0,0,0,0,0
+
+ if random_drop_embedding=image. we will random drop image feature
+ and always keep the text one.
+
+ """
+ N = masks.shape[0]
+
+ if random_drop_embedding=='both':
+ temp_mask = torch.ones(2,N)
+ for i in range(N):
+ if random.uniform(0, 1) < 0.5: # else keep both features
+ idx = random.sample([0,1], 1)[0] # randomly choose to drop image or text feature
+ temp_mask[idx,i] = 0
+ image_masks = temp_mask[0]*masks
+ text_masks = temp_mask[1]*masks
+
+ if random_drop_embedding=='image':
+ image_masks = masks*(torch.rand(N)>0.5)*1
+ text_masks = masks
+
+ return image_masks, text_masks
+
+
+
+
+
+def project(x, projection_matrix):
+ """
+ x (Batch*768) should be the penultimate feature of CLIP (before projection)
+ projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
+ defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
+ this function will return the CLIP feature (without normalziation)
+ """
+ return x@torch.transpose(projection_matrix, 0, 1)
+
+
+def inv_project(y, projection_matrix):
+ """
+ y (Batch*768) should be the CLIP feature (after projection)
+ projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
+ defined in CLIP (out_dim, in_dim).
+ this function will return the CLIP penultimate feature.
+
+ Note: to make sure getting the correct penultimate feature, the input y should not be normalized.
+ If it is normalized, then the result will be scaled by CLIP feature norm, which is unknown.
+ """
+ return y@torch.transpose(torch.linalg.inv(projection_matrix), 0, 1)
+
+
+
+
+class TSVDataset(BaseDataset):
+ def __init__(self,
+ tsv_path,
+ which_embedder='clip',
+ which_layer=['after','after'], # text and image
+ prob_use_caption=1,
+ random_drop_embedding='none',
+ image_size=256,
+ min_box_size=0.01,
+ max_boxes_per_data=8,
+ max_images=None, # set as 30K used to eval
+ random_crop = False,
+ random_flip = True,
+ ):
+ image_root = "a placeholder path as we are using tsv here"
+ super().__init__(image_root, random_crop, random_flip, image_size)
+ self.tsv_path = tsv_path
+ self.which_embedder = which_embedder
+ self.prob_use_caption = prob_use_caption
+ self.random_drop_embedding = random_drop_embedding
+ self.min_box_size = min_box_size
+ self.max_boxes_per_data = max_boxes_per_data
+ self.max_images = max_images
+
+ assert which_layer in [ ['after','after'], ['before','after_renorm'], ['before','after_reproject'] ]
+ assert random_drop_embedding in ['none', 'both', 'image']
+ self.which_layer_text = which_layer[0]
+ self.which_layer_image = which_layer[1]
+
+ #self.projection_matrix = torch.load(os.path.join(os.path.dirname(__file__), 'projection_matrix') )
+ self.projection_matrix = torch.load('projection_matrix')
+
+ # Load tsv data
+ self.tsv_file = TSVFile(self.tsv_path)
+
+
+ # Load preprocessed name embedding
+ if which_embedder == 'bert':
+ self.embedding_len = 1280
+ elif which_embedder == 'clip':
+ self.embedding_len = 768
+ else:
+ assert False
+
+ def total_images(self):
+ return len(self)
+
+ def get_item_from_tsv(self, index):
+ _, item = self.tsv_file[index]
+ item = decode_item(item)
+ return item
+
+
+ def mapping(self, image_embedding):
+ if self.which_layer_image == 'after':
+ # both use CLIP aligned feature
+ return image_embedding
+ elif self.which_layer_image == 'after_renorm':
+ # text use before, but image use after projection but normalize to 28.7
+ return image_embedding*28.7
+ elif self.which_layer_image == 'after_reproject':
+ image_embedding = project( image_embedding.unsqueeze(0), self.projection_matrix.T )
+ image_embedding = image_embedding.squeeze(0)
+ image_embedding = image_embedding / image_embedding.norm()
+ image_embedding = image_embedding * 28.7
+ return image_embedding
+
+
+
+ def __getitem__(self, index):
+ if self.max_boxes_per_data > 99:
+ assert False, "Are you sure setting such large number of boxes?"
+
+ raw_item = self.get_item_from_tsv(index)
+ is_det = raw_item.get('is_det', False) # if it is from detection (such as o365), then we will make a caption
+
+ out = {}
+
+ # -------------------- id and image ------------------- #
+ out['id'] = raw_item['data_id']
+ image = raw_item['image']
+ image_tensor, trans_info = self.transform_image(image)
+ out["image"] = image_tensor
+
+
+
+ # -------------------- grounding token ------------------- #
+ annos = raw_item['annos']
+
+ areas = []
+ all_boxes = []
+ all_masks = []
+ all_text_embeddings = []
+ all_image_embeddings = []
+ if is_det:
+ all_category_names = []
+
+ text_embedding_name = 'text_embedding_before' if self.which_layer_text == 'before' else 'text_embedding_after'
+ image_embedding_name = 'image_embedding_after'
+
+ for anno in annos:
+ x, y, w, h = anno['bbox']
+ valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid(x, y, w, h, trans_info, self.image_size, self.min_box_size)
+
+ if valid:
+ areas.append( (x1-x0)*(y1-y0) )
+ all_boxes.append( torch.tensor([x0,y0,x1,y1]) / self.image_size ) # scale to 0-1
+ all_masks.append(1)
+ all_text_embeddings.append(anno[text_embedding_name])
+ all_image_embeddings.append( self.mapping(anno[image_embedding_name]) )
+ if is_det:
+ all_category_names.append(anno["category_name"])
+
+
+ wanted_idxs = torch.tensor(areas).sort(descending=True)[1]
+ wanted_idxs = wanted_idxs[0:self.max_boxes_per_data]
+
+ boxes = torch.zeros(self.max_boxes_per_data, 4)
+ masks = torch.zeros(self.max_boxes_per_data)
+ text_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
+ image_embeddings = torch.zeros(self.max_boxes_per_data, self.embedding_len)
+ if is_det:
+ category_names = []
+ for i, idx in enumerate(wanted_idxs):
+ boxes[i] = all_boxes[idx]
+ masks[i] = all_masks[idx]
+ text_embeddings[i] = all_text_embeddings[idx]
+ image_embeddings[i] = all_image_embeddings[idx]
+ if is_det:
+ category_names.append(all_category_names[idx])
+
+ if self.random_drop_embedding != 'none':
+ image_masks, text_masks = mask_for_random_drop_text_or_image_feature(masks, self.random_drop_embedding)
+ else:
+ image_masks = masks
+ text_masks = masks
+
+
+ out["boxes"] = boxes
+ out["masks"] = masks
+ out["image_masks"] = image_masks
+ out["text_masks"] = text_masks
+ out["text_embeddings"] = text_embeddings
+ out["image_embeddings"] = image_embeddings
+
+
+
+ # -------------------- caption ------------------- #
+ if random.uniform(0, 1) < self.prob_use_caption:
+ if is_det:
+ out["caption"] = make_a_sentence(category_names)
+ else:
+ out["caption"] = raw_item["caption"]
+ else:
+ out["caption"] = ""
+
+ return out
+
+
+
+ def __len__(self):
+ return len(self.tsv_file)
+
+
diff --git a/dataset/utils.py b/dataset/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..0ceafd04bc6860eaccfe5a480fb452f00792dac4
--- /dev/null
+++ b/dataset/utils.py
@@ -0,0 +1,116 @@
+#!/usr/bin/python
+#
+# Copyright 2018 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import PIL
+import torch
+import torchvision.transforms as T
+
+
+IMAGENET_MEAN = [0.485, 0.456, 0.406]
+IMAGENET_STD = [0.229, 0.224, 0.225]
+
+INV_IMAGENET_MEAN = [-m for m in IMAGENET_MEAN]
+INV_IMAGENET_STD = [1.0 / s for s in IMAGENET_STD]
+
+
+def imagenet_preprocess():
+ return T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
+
+
+def rescale(x):
+ lo, hi = x.min(), x.max()
+ return x.sub(lo).div(hi - lo)
+
+
+def imagenet_deprocess(rescale_image=True):
+ transforms = [
+ T.Normalize(mean=[0, 0, 0], std=INV_IMAGENET_STD),
+ T.Normalize(mean=INV_IMAGENET_MEAN, std=[1.0, 1.0, 1.0]),
+ ]
+ if rescale_image:
+ transforms.append(rescale)
+ return T.Compose(transforms)
+
+
+def imagenet_deprocess_batch(imgs, rescale=True):
+ """
+ Input:
+ - imgs: FloatTensor of shape (N, C, H, W) giving preprocessed images
+
+ Output:
+ - imgs_de: ByteTensor of shape (N, C, H, W) giving deprocessed images
+ in the range [0, 255]
+ """
+ if isinstance(imgs, torch.autograd.Variable):
+ imgs = imgs.data
+ imgs = imgs.cpu().clone()
+ deprocess_fn = imagenet_deprocess(rescale_image=rescale)
+ imgs_de = []
+ for i in range(imgs.size(0)):
+ img_de = deprocess_fn(imgs[i])[None]
+ img_de = img_de.mul(255).clamp(0, 255).byte()
+ imgs_de.append(img_de)
+ imgs_de = torch.cat(imgs_de, dim=0)
+ return imgs_de
+
+
+class Resize(object):
+ def __init__(self, size, interp=PIL.Image.BILINEAR):
+ if isinstance(size, tuple):
+ H, W = size
+ self.size = (W, H)
+ else:
+ self.size = (size, size)
+ self.interp = interp
+
+ def __call__(self, img):
+ return img.resize(self.size, self.interp)
+
+
+def unpack_var(v):
+ if isinstance(v, torch.autograd.Variable):
+ return v.data
+ return v
+
+
+def split_graph_batch(triples, obj_data, obj_to_img, triple_to_img):
+ triples = unpack_var(triples)
+ obj_data = [unpack_var(o) for o in obj_data]
+ obj_to_img = unpack_var(obj_to_img)
+ triple_to_img = unpack_var(triple_to_img)
+
+ triples_out = []
+ obj_data_out = [[] for _ in obj_data]
+ obj_offset = 0
+ N = obj_to_img.max() + 1
+ for i in range(N):
+ o_idxs = (obj_to_img == i).nonzero().view(-1)
+ t_idxs = (triple_to_img == i).nonzero().view(-1)
+
+ cur_triples = triples[t_idxs].clone()
+ cur_triples[:, 0] -= obj_offset
+ cur_triples[:, 2] -= obj_offset
+ triples_out.append(cur_triples)
+
+ for j, o_data in enumerate(obj_data):
+ cur_o_data = None
+ if o_data is not None:
+ cur_o_data = o_data[o_idxs]
+ obj_data_out[j].append(cur_o_data)
+
+ obj_offset += o_idxs.size(0)
+
+ return triples_out, obj_data_out
diff --git a/environment.yaml b/environment.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..6fa931c37c2b460f4de1959a0e8fc5d777cf71c4
--- /dev/null
+++ b/environment.yaml
@@ -0,0 +1,29 @@
+name: gligen_demo
+channels:
+ - xformers/label/dev
+ - pytorch
+ - defaults
+dependencies:
+ - python=3.10.8
+ - pip=22.2.2
+ - cudatoolkit=11.3
+ - pytorch=1.12.1
+ - torchvision=0.13.1
+ - numpy=1.23.1
+ - xformers
+ - pip:
+ - omegaconf==2.1.1
+ - albumentations==1.3.0
+ - opencv-python
+ - imageio==2.9.0
+ - imageio-ffmpeg==0.4.2
+ - pytorch-lightning==1.4.2
+ - test-tube>=0.7.5
+ - streamlit==1.12.1
+ - einops==0.3.0
+ - git+https://github.com/openai/CLIP.git
+ - protobuf~=3.20.1
+ - torchmetrics==0.6.0
+ - transformers==4.19.2
+ - kornia==0.6.0
+ - gradio==3.16.0
\ No newline at end of file
diff --git a/gligen/__init__.py b/gligen/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..67cf72156e8a5586636f0af71bb47be11a7db307
--- /dev/null
+++ b/gligen/__init__.py
@@ -0,0 +1,10 @@
+
+import os, sys
+sys.path.append(os.path.dirname(__file__))
+sys.path.append(os.path.join(os.path.dirname(__file__), "ldm"))
+
+import gligen.evaluator as evaluator
+import gligen.trainer as trainer
+
+
+# import gligen.ldm as ldm
\ No newline at end of file
diff --git a/gligen/create_meta.py b/gligen/create_meta.py
new file mode 100644
index 0000000000000000000000000000000000000000..7512c6d377df98db7e17515a7143b7a4ef7d5f32
--- /dev/null
+++ b/gligen/create_meta.py
@@ -0,0 +1,170 @@
+CKPTS = [
+
+ dict(
+ path="/home/chunyl/azure_mount/yuhengdb/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_both/tag01/checkpoint_00450001.pth",
+ feature_type=['before','after_reproject'],
+ save_folder_name="v5b6_drop_both",
+ ),
+
+
+ # dict(
+ # path="/home/v-yuhengli/blobfuse/output/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_none/tag00/checkpoint_00165001.pth",
+ # feature_type=['before','after_reproject'],
+ # save_folder_name="v5b6_drop_none",
+ # ),
+
+
+
+
+
+]
+
+
+
+# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
+
+
+
+
+
+
+
+
+ # if meta["has_image_mask"] == 0:
+ # image_embeddings = text_embeddings
+ # if meta["has_text_mask"] == 0:
+ # text_embeddings = image_embeddings
+
+ # out = {
+ # "boxes" : boxes.unsqueeze(0).repeat(batch,1,1),
+ # "masks" : masks.unsqueeze(0).repeat(batch,1),
+ # "text_masks" : masks.unsqueeze(0).repeat(batch,1),
+ # "image_masks" : masks.unsqueeze(0).repeat(batch,1),
+ # "text_embeddings" : text_embeddings.unsqueeze(0).repeat(batch,1,1),
+ # "image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1)
+ # }
+
+
+
+
+
+
+
+META = [
+
+
+ dict(
+ prompt = "a teddy bear sitting next to a red bird",
+ phrases = ['a teddy bear', 'a red bird'],
+ images = ['images/teddy.jpg', 'images/red_bird.jpg'],
+ locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ alpha_type = [1.0, 0, 0.0],
+ has_text_mask = 1,
+ has_image_mask = 0,
+ save_folder_name="teddy_bird_1_1"
+ ),
+
+
+ # dict(
+ # prompt = "a teddy bear sitting next to a bird",
+ # phrases = ['a teddy bear', 'a bird'],
+ # images = ['images/teddy.jpg', 'images/red_bird.jpg'],
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ # alpha_type = [1.0, 0, 0.0],
+ # has_text_mask = 1,
+ # has_image_mask = 1,
+ # save_folder_name="teddy_bird_1_1"
+ # ),
+
+
+ # dict(
+ # prompt = "a teddy bear sitting next to a bird",
+ # phrases = ['a teddy bear', 'a bird'],
+ # images = ['images/teddy.jpg', 'images/red_bird.jpg'],
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ # alpha_type = [0.5, 0, 0.5],
+ # has_text_mask = 1,
+ # has_image_mask = 0,
+ # save_folder_name="teddy_bird_1_0"
+ # ),
+
+ # dict(
+ # prompt = "",
+ # phrases = ['a teddy bear', 'an umbrella'],
+ # images = ['images/teddy.jpg', 'images/umbrella.png'],
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ # alpha_type = [1.0, 0, 0.0],
+ # has_text_mask = 1,
+ # has_image_mask = 1,
+ # save_folder_name="empty_teddy_umbrella_1_1"
+ # ),
+
+ # dict(
+ # prompt = "hello kitty and bird hybrid",
+ # phrases = ['a hello kitty', 'a hello kitty'],
+ # images = ['images/red_bird.jpg', 'images/red_bird.jpg'],
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ # has_text_mask = 1,
+ # has_image_mask = 1,
+ # save_folder_name="hello+bird_1_1"
+ # ),
+
+ # dict(
+ # prompt = "hello kitty and teddy bear hybrid",
+ # phrases = ['a hello kitty', 'a hello kitty'],
+ # images = ['images/teddy.jpg', 'images/teddy.jpg'],
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ # has_text_mask = 1,
+ # has_image_mask = 1,
+ # save_folder_name="hello+teddy_1_1"
+ # ),
+
+ # dict(
+ # prompt = "bird and hello kitty hybrid",
+ # phrases = ['a bird', 'a bird'],
+ # images = ['images/hello.jpg', 'images/hello.jpg'],
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
+ # alpha_type = [1.0, 0, 0.0],
+ # has_text_mask = 1,
+ # has_image_mask = 0.5,
+ # save_folder_name="bird+hello_1_1"
+ # ),
+
+
+
+ # dict(
+ # prompt = "a deer standing in front of a brick house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k",
+ # phrases = ['a deer'],
+ # images = ['images/sky.jpg'],
+ # locations = [ [0.0,0.5,0.5,0.9] ],
+ # alpha_type = [1, 0, 0],
+ # has_text_mask = 1,
+ # has_image_mask = 1,
+ # save_folder_name="deer_sky"
+ # ),
+
+
+ # dict(
+ # prompt = "A woman sitting in a restaurant with a slice of pizza in front of her",
+ # phrases = ['dining table', 'pizza', 'person', 'wall', 'car', 'paper', 'chair', 'window', 'bottle', 'cup'],
+ # images = ['images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg'],
+ # locations = [ [0.0030, 0.3589, 1.0000, 1.0000],
+ # [0.0779, 0.6744, 0.9768, 1.0000],
+ # [0.2236, 0.0000, 0.7809, 0.4352],
+ # [0.0000, 0.0000, 0.4313, 0.4505],
+ # [0.6275, 0.1050, 0.9444, 0.2497],
+ # [0.0000, 0.3859, 0.1250, 0.6922],
+ # [0.7137, 0.2389, 0.8540, 0.4549],
+ # [0.0000, 0.0000, 0.4667, 0.0630],
+ # [0.3822, 0.4235, 0.4932, 0.6575],
+ # [0.6616, 0.3617, 0.7880, 0.5165] ],
+ # alpha_type = [0.0, 0, 1.0],
+ # has_text_mask = 1,
+ # has_image_mask = 0,
+ # save_folder_name="pizza_1_0"
+ # ),
+
+
+
+
+]
\ No newline at end of file
diff --git a/gligen/distributed.py b/gligen/distributed.py
new file mode 100755
index 0000000000000000000000000000000000000000..b39bc6e92f74fc46c6ec316e1e41859744a91b7a
--- /dev/null
+++ b/gligen/distributed.py
@@ -0,0 +1,122 @@
+import math
+import pickle
+
+import torch
+from torch import distributed as dist
+from torch.utils.data.sampler import Sampler
+
+
+def get_rank():
+ if not dist.is_available():
+ return 0
+
+ if not dist.is_initialized():
+ return 0
+
+ return dist.get_rank()
+
+
+def synchronize():
+ if not dist.is_available():
+ return
+ if not dist.is_initialized():
+ return
+
+ world_size = dist.get_world_size()
+ if world_size == 1:
+ return
+
+ dist.barrier()
+
+
+def get_world_size():
+ if not dist.is_available():
+ return 1
+ if not dist.is_initialized():
+ return 1
+ return dist.get_world_size()
+
+
+def reduce_sum(tensor):
+ if not dist.is_available():
+ return tensor
+
+ if not dist.is_initialized():
+ return tensor
+
+ tensor = tensor.clone()
+ dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
+
+ return tensor
+
+
+def gather_grad(params):
+ world_size = get_world_size()
+
+ if world_size == 1:
+ return
+
+ for param in params:
+ if param.grad is not None:
+ dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
+ param.grad.data.div_(world_size)
+
+
+def all_gather(data):
+ world_size = get_world_size()
+
+ if world_size == 1:
+ return [data]
+
+ buffer = pickle.dumps(data)
+ storage = torch.ByteStorage.from_buffer(buffer)
+ tensor = torch.ByteTensor(storage).to('cuda')
+
+ local_size = torch.IntTensor([tensor.numel()]).to('cuda')
+ size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
+ dist.all_gather(size_list, local_size)
+ size_list = [int(size.item()) for size in size_list]
+ max_size = max(size_list)
+
+ tensor_list = []
+ for _ in size_list:
+ tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
+
+ if local_size != max_size:
+ padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
+ tensor = torch.cat((tensor, padding), 0)
+
+ dist.all_gather(tensor_list, tensor)
+
+ data_list = []
+
+ for size, tensor in zip(size_list, tensor_list):
+ buffer = tensor.cpu().numpy().tobytes()[:size]
+ data_list.append(pickle.loads(buffer))
+
+ return data_list
+
+
+def reduce_loss_dict(loss_dict):
+ world_size = get_world_size()
+
+ if world_size < 2:
+ return loss_dict
+
+ with torch.no_grad():
+ keys = []
+ losses = []
+
+ for k in sorted(loss_dict.keys()):
+ keys.append(k)
+ losses.append(loss_dict[k])
+
+ losses = torch.stack(losses, 0)
+ dist.reduce(losses, dst=0)
+
+ if dist.get_rank() == 0:
+ losses /= world_size
+
+ reduced_losses = {k: v for k, v in zip(keys, losses)}
+
+ return reduced_losses
diff --git a/gligen/evaluator.py b/gligen/evaluator.py
new file mode 100644
index 0000000000000000000000000000000000000000..afb61ec9aef76ef2654769c878bc233e4c805767
--- /dev/null
+++ b/gligen/evaluator.py
@@ -0,0 +1,225 @@
+import torch
+from ldm.models.diffusion.ddim import DDIMSampler
+from ldm.models.diffusion.plms import PLMSSampler
+from ldm.util import instantiate_from_config
+import numpy as np
+import random
+from dataset.concat_dataset import ConCatDataset #, collate_fn
+from torch.utils.data import DataLoader
+from torch.utils.data.distributed import DistributedSampler
+import os
+from tqdm import tqdm
+from distributed import get_rank, synchronize, get_world_size
+from trainer import read_official_ckpt, batch_to_device, ImageCaptionSaver, wrap_loader #, get_padded_boxes
+from PIL import Image
+import math
+import json
+
+
+def draw_masks_from_boxes(boxes,size):
+
+ image_masks = []
+ for box in boxes:
+ image_mask = torch.ones(size[0],size[1])
+ for bx in box:
+ x0, x1 = bx[0]*size[0], bx[2]*size[0]
+ y0, y1 = bx[1]*size[1], bx[3]*size[1]
+ image_mask[int(y0):int(y1), int(x0):int(x1)] = 0
+ image_masks.append(image_mask)
+ return torch.stack(image_masks).unsqueeze(1)
+
+
+
+def set_alpha_scale(model, alpha_scale):
+ from ldm.modules.attention import GatedCrossAttentionDense, GatedSelfAttentionDense
+ for module in model.modules():
+ if type(module) == GatedCrossAttentionDense or type(module) == GatedSelfAttentionDense:
+ module.scale = alpha_scale
+ # print("scale: ", alpha_scale)
+ # print("attn: ", module.alpha_attn)
+ # print("dense: ", module.alpha_dense)
+ # print(' ')
+ # print(' ')
+
+
+def save_images(samples, image_ids, folder, to256):
+ for sample, image_id in zip(samples, image_ids):
+ sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
+ sample = sample.cpu().numpy().transpose(1,2,0) * 255
+ img_name = str(int(image_id))+'.png'
+ img = Image.fromarray(sample.astype(np.uint8))
+ if to256:
+ img = img.resize( (256,256), Image.BICUBIC)
+ img.save(os.path.join(folder,img_name))
+
+
+def ckpt_to_folder_name(basename):
+ name=""
+ for s in basename:
+ if s.isdigit():
+ name+=s
+ seen = round( int(name)/1000, 1 )
+ return str(seen).ljust(4,'0')+'k'
+
+
+class Evaluator:
+ def __init__(self, config):
+
+ self.config = config
+ self.device = torch.device("cuda")
+
+
+ # = = = = = create model and diffusion = = = = = #
+ if self.config.ckpt != "real":
+
+ self.model = instantiate_from_config(config.model).to(self.device)
+ self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
+ self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
+ self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
+
+ # donot need to load official_ckpt for self.model here, since we will load from our ckpt
+ state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
+ self.autoencoder.load_state_dict( state_dict["autoencoder"] )
+ self.text_encoder.load_state_dict( state_dict["text_encoder"] )
+ self.diffusion.load_state_dict( state_dict["diffusion"] )
+
+
+ # = = = = = load from our ckpt = = = = = #
+ if self.config.ckpt == "real":
+ print("Saving all real images...")
+ self.just_save_real = True
+ else:
+ checkpoint = torch.load(self.config.ckpt, map_location="cpu")
+ which_state = 'ema' if 'ema' in checkpoint else "model"
+ which_state = which_state if config.which_state is None else config.which_state
+ self.model.load_state_dict(checkpoint[which_state])
+ print("ckpt is loaded")
+ self.just_save_real = False
+ set_alpha_scale(self.model, self.config.alpha_scale)
+
+ self.autoencoder.eval()
+ self.model.eval()
+ self.text_encoder.eval()
+
+
+ # = = = = = create data = = = = = #
+ self.dataset_eval = ConCatDataset(config.val_dataset_names, config.DATA_ROOT, config.which_embedder, train=False)
+ print("total eval images: ", len(self.dataset_eval))
+ sampler = DistributedSampler(self.dataset_eval,shuffle=False) if config.distributed else None
+ loader_eval = DataLoader( self.dataset_eval,batch_size=config.batch_size,
+ num_workers=config.workers,
+ pin_memory=True,
+ sampler=sampler,
+ drop_last=False) # shuffle default is False
+ self.loader_eval = loader_eval
+
+
+ # = = = = = create output folder = = = = = #
+ folder_name = ckpt_to_folder_name(os.path.basename(config.ckpt))
+ self.outdir = os.path.join(config.OUTPUT_ROOT, folder_name)
+ self.outdir_real = os.path.join(self.outdir,'real')
+ self.outdir_fake = os.path.join(self.outdir,'fake')
+ if config.to256:
+ self.outdir_real256 = os.path.join(self.outdir,'real256')
+ self.outdir_fake256 = os.path.join(self.outdir,'fake256')
+ synchronize() # if rank0 is faster, it may mkdir before the other rank call os.listdir()
+ if get_rank() == 0:
+ os.makedirs(self.outdir, exist_ok=True)
+ os.makedirs(self.outdir_real, exist_ok=True)
+ os.makedirs(self.outdir_fake, exist_ok=True)
+ if config.to256:
+ os.makedirs(self.outdir_real256, exist_ok=True)
+ os.makedirs(self.outdir_fake256, exist_ok=True)
+ print(self.outdir) # double check
+
+ self.evaluation_finished = False
+ if os.path.exists( os.path.join(self.outdir,'score.txt') ):
+ self.evaluation_finished = True
+
+
+ def alread_saved_this_batch(self, batch):
+ existing_real_files = os.listdir( self.outdir_real )
+ existing_fake_files = os.listdir( self.outdir_fake )
+ status = []
+ for image_id in batch["id"]:
+ img_name = str(int(image_id))+'.png'
+ status.append(img_name in existing_real_files)
+ status.append(img_name in existing_fake_files)
+ return all(status)
+
+
+ @torch.no_grad()
+ def start_evaluating(self):
+
+ iterator = tqdm( self.loader_eval, desc='Evaluating progress')
+ for batch in iterator:
+
+ #if not self.alread_saved_this_batch(batch):
+ if True:
+
+ batch_to_device(batch, self.device)
+ batch_size = batch["image"].shape[0]
+ samples_real = batch["image"]
+
+ if self.just_save_real:
+ samples_fake = None
+ else:
+ uc = self.text_encoder.encode( batch_size*[""] )
+ context = self.text_encoder.encode( batch["caption"] )
+
+ image_mask = x0 = None
+ if self.config.inpaint:
+ image_mask = draw_masks_from_boxes( batch['boxes'], self.model.image_size ).cuda()
+ x0 = self.autoencoder.encode( batch["image"] )
+
+ shape = (batch_size, self.model.in_channels, self.model.image_size, self.model.image_size)
+ if self.config.no_plms:
+ sampler = DDIMSampler(self.diffusion, self.model)
+ steps = 250
+ else:
+ sampler = PLMSSampler(self.diffusion, self.model)
+ steps = 50
+
+ input = dict( x=None, timesteps=None, context=context, boxes=batch['boxes'], masks=batch['masks'], positive_embeddings=batch["positive_embeddings"] )
+ samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=self.config.guidance_scale, mask=image_mask, x0=x0)
+ samples_fake = self.autoencoder.decode(samples_fake)
+
+
+ save_images(samples_real, batch['id'], self.outdir_real, to256=False )
+ if self.config.to256:
+ save_images(samples_real, batch['id'], self.outdir_real256, to256=True )
+
+ if samples_fake is not None:
+ save_images(samples_fake, batch['id'], self.outdir_fake, to256=False )
+ if self.config.to256:
+ save_images(samples_fake, batch['id'], self.outdir_fake256, to256=True )
+
+
+ def fire_fid(self):
+ paths = [self.outdir_real, self.outdir_fake]
+ if self.config.to256:
+ paths = [self.outdir_real256, self.outdir_fake256]
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/gligen/ldm/__init__.py b/gligen/ldm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..d71fc3230d513f470c68e46752b355cd70824ecf
--- /dev/null
+++ b/gligen/ldm/__init__.py
@@ -0,0 +1,3 @@
+import gligen.evaluator as evaluator
+import gligen.trainer as trainer
+import gligen.ldm as ldm
\ No newline at end of file
diff --git a/gligen/ldm/data/__init__.py b/gligen/ldm/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/gligen/ldm/data/base.py b/gligen/ldm/data/base.py
new file mode 100644
index 0000000000000000000000000000000000000000..b196c2f7aa583a3e8bc4aad9f943df0c4dae0da7
--- /dev/null
+++ b/gligen/ldm/data/base.py
@@ -0,0 +1,23 @@
+from abc import abstractmethod
+from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
+
+
+class Txt2ImgIterableBaseDataset(IterableDataset):
+ '''
+ Define an interface to make the IterableDatasets for text2img data chainable
+ '''
+ def __init__(self, num_records=0, valid_ids=None, size=256):
+ super().__init__()
+ self.num_records = num_records
+ self.valid_ids = valid_ids
+ self.sample_ids = valid_ids
+ self.size = size
+
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
+
+ def __len__(self):
+ return self.num_records
+
+ @abstractmethod
+ def __iter__(self):
+ pass
\ No newline at end of file
diff --git a/gligen/ldm/data/imagenet.py b/gligen/ldm/data/imagenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..ec7c09fe3e32a634cb47dbd8b5c23aaeb4580b4a
--- /dev/null
+++ b/gligen/ldm/data/imagenet.py
@@ -0,0 +1,394 @@
+import os, yaml, pickle, shutil, tarfile, glob
+import cv2
+import albumentations
+import PIL
+import numpy as np
+import torchvision.transforms.functional as TF
+from omegaconf import OmegaConf
+from functools import partial
+from PIL import Image
+from tqdm import tqdm
+from torch.utils.data import Dataset, Subset
+
+import taming.data.utils as tdu
+from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
+from taming.data.imagenet import ImagePaths
+
+from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
+
+
+def synset2idx(path_to_yaml="ldm/data/index_synset.yaml"):
+ with open(path_to_yaml) as f:
+ di2s = yaml.load(f)
+ return dict((v,k) for k,v in di2s.items())
+
+
+class ImageNetBase(Dataset):
+ def __init__(self, config=None):
+ self.config = config or OmegaConf.create()
+ if not type(self.config)==dict:
+ self.config = OmegaConf.to_container(self.config)
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
+ self._prepare()
+ self._prepare_synset_to_human()
+ self._prepare_idx_to_synset()
+ self._prepare_human_to_integer_label()
+ self._load()
+
+ def __len__(self):
+ return len(self.data)
+
+ def __getitem__(self, i):
+ return self.data[i]
+
+ def _prepare(self):
+ raise NotImplementedError()
+
+ def _filter_relpaths(self, relpaths):
+ ignore = set([
+ "n06596364_9591.JPEG",
+ ])
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
+ if "sub_indices" in self.config:
+ indices = str_to_indices(self.config["sub_indices"])
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
+ files = []
+ for rpath in relpaths:
+ syn = rpath.split("/")[0]
+ if syn in synsets:
+ files.append(rpath)
+ return files
+ else:
+ return relpaths
+
+ def _prepare_synset_to_human(self):
+ SIZE = 2655750
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
+ if (not os.path.exists(self.human_dict) or
+ not os.path.getsize(self.human_dict)==SIZE):
+ download(URL, self.human_dict)
+
+ def _prepare_idx_to_synset(self):
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
+ if (not os.path.exists(self.idx2syn)):
+ download(URL, self.idx2syn)
+
+ def _prepare_human_to_integer_label(self):
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
+ if (not os.path.exists(self.human2integer)):
+ download(URL, self.human2integer)
+ with open(self.human2integer, "r") as f:
+ lines = f.read().splitlines()
+ assert len(lines) == 1000
+ self.human2integer_dict = dict()
+ for line in lines:
+ value, key = line.split(":")
+ self.human2integer_dict[key] = int(value)
+
+ def _load(self):
+ with open(self.txt_filelist, "r") as f:
+ self.relpaths = f.read().splitlines()
+ l1 = len(self.relpaths)
+ self.relpaths = self._filter_relpaths(self.relpaths)
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
+
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
+
+ unique_synsets = np.unique(self.synsets)
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
+ if not self.keep_orig_class_label:
+ self.class_labels = [class_dict[s] for s in self.synsets]
+ else:
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
+
+ with open(self.human_dict, "r") as f:
+ human_dict = f.read().splitlines()
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
+
+ self.human_labels = [human_dict[s] for s in self.synsets]
+
+ labels = {
+ "relpath": np.array(self.relpaths),
+ "synsets": np.array(self.synsets),
+ "class_label": np.array(self.class_labels),
+ "human_label": np.array(self.human_labels),
+ }
+
+ if self.process_images:
+ self.size = retrieve(self.config, "size", default=256)
+ self.data = ImagePaths(self.abspaths,
+ labels=labels,
+ size=self.size,
+ random_crop=self.random_crop,
+ )
+ else:
+ self.data = self.abspaths
+
+
+class ImageNetTrain(ImageNetBase):
+ NAME = "ILSVRC2012_train"
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
+ FILES = [
+ "ILSVRC2012_img_train.tar",
+ ]
+ SIZES = [
+ 147897477120,
+ ]
+
+ def __init__(self, process_images=True, data_root=None, **kwargs):
+ self.process_images = process_images
+ self.data_root = data_root
+ super().__init__(**kwargs)
+
+ def _prepare(self):
+ if self.data_root:
+ self.root = os.path.join(self.data_root, self.NAME)
+ else:
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
+
+ self.datadir = os.path.join(self.root, "data")
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
+ self.expected_length = 1281167
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
+ default=True)
+ if not tdu.is_prepared(self.root):
+ # prep
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
+
+ datadir = self.datadir
+ if not os.path.exists(datadir):
+ path = os.path.join(self.root, self.FILES[0])
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
+ import academictorrents as at
+ atpath = at.get(self.AT_HASH, datastore=self.root)
+ assert atpath == path
+
+ print("Extracting {} to {}".format(path, datadir))
+ os.makedirs(datadir, exist_ok=True)
+ with tarfile.open(path, "r:") as tar:
+ tar.extractall(path=datadir)
+
+ print("Extracting sub-tars.")
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
+ for subpath in tqdm(subpaths):
+ subdir = subpath[:-len(".tar")]
+ os.makedirs(subdir, exist_ok=True)
+ with tarfile.open(subpath, "r:") as tar:
+ tar.extractall(path=subdir)
+
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
+ filelist = sorted(filelist)
+ filelist = "\n".join(filelist)+"\n"
+ with open(self.txt_filelist, "w") as f:
+ f.write(filelist)
+
+ tdu.mark_prepared(self.root)
+
+
+class ImageNetValidation(ImageNetBase):
+ NAME = "ILSVRC2012_validation"
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
+ FILES = [
+ "ILSVRC2012_img_val.tar",
+ "validation_synset.txt",
+ ]
+ SIZES = [
+ 6744924160,
+ 1950000,
+ ]
+
+ def __init__(self, process_images=True, data_root=None, **kwargs):
+ self.data_root = data_root
+ self.process_images = process_images
+ super().__init__(**kwargs)
+
+ def _prepare(self):
+ if self.data_root:
+ self.root = os.path.join(self.data_root, self.NAME)
+ else:
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
+ self.datadir = os.path.join(self.root, "data")
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
+ self.expected_length = 50000
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
+ default=False)
+ if not tdu.is_prepared(self.root):
+ # prep
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
+
+ datadir = self.datadir
+ if not os.path.exists(datadir):
+ path = os.path.join(self.root, self.FILES[0])
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
+ import academictorrents as at
+ atpath = at.get(self.AT_HASH, datastore=self.root)
+ assert atpath == path
+
+ print("Extracting {} to {}".format(path, datadir))
+ os.makedirs(datadir, exist_ok=True)
+ with tarfile.open(path, "r:") as tar:
+ tar.extractall(path=datadir)
+
+ vspath = os.path.join(self.root, self.FILES[1])
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
+ download(self.VS_URL, vspath)
+
+ with open(vspath, "r") as f:
+ synset_dict = f.read().splitlines()
+ synset_dict = dict(line.split() for line in synset_dict)
+
+ print("Reorganizing into synset folders")
+ synsets = np.unique(list(synset_dict.values()))
+ for s in synsets:
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
+ for k, v in synset_dict.items():
+ src = os.path.join(datadir, k)
+ dst = os.path.join(datadir, v)
+ shutil.move(src, dst)
+
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
+ filelist = sorted(filelist)
+ filelist = "\n".join(filelist)+"\n"
+ with open(self.txt_filelist, "w") as f:
+ f.write(filelist)
+
+ tdu.mark_prepared(self.root)
+
+
+
+class ImageNetSR(Dataset):
+ def __init__(self, size=None,
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
+ random_crop=True):
+ """
+ Imagenet Superresolution Dataloader
+ Performs following ops in order:
+ 1. crops a crop of size s from image either as random or center crop
+ 2. resizes crop to size with cv2.area_interpolation
+ 3. degrades resized crop with degradation_fn
+
+ :param size: resizing to size after cropping
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
+ :param downscale_f: Low Resolution Downsample factor
+ :param min_crop_f: determines crop size s,
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
+ :param max_crop_f: ""
+ :param data_root:
+ :param random_crop:
+ """
+ self.base = self.get_base()
+ assert size
+ assert (size / downscale_f).is_integer()
+ self.size = size
+ self.LR_size = int(size / downscale_f)
+ self.min_crop_f = min_crop_f
+ self.max_crop_f = max_crop_f
+ assert(max_crop_f <= 1.)
+ self.center_crop = not random_crop
+
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
+
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
+
+ if degradation == "bsrgan":
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
+
+ elif degradation == "bsrgan_light":
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
+
+ else:
+ interpolation_fn = {
+ "cv_nearest": cv2.INTER_NEAREST,
+ "cv_bilinear": cv2.INTER_LINEAR,
+ "cv_bicubic": cv2.INTER_CUBIC,
+ "cv_area": cv2.INTER_AREA,
+ "cv_lanczos": cv2.INTER_LANCZOS4,
+ "pil_nearest": PIL.Image.NEAREST,
+ "pil_bilinear": PIL.Image.BILINEAR,
+ "pil_bicubic": PIL.Image.BICUBIC,
+ "pil_box": PIL.Image.BOX,
+ "pil_hamming": PIL.Image.HAMMING,
+ "pil_lanczos": PIL.Image.LANCZOS,
+ }[degradation]
+
+ self.pil_interpolation = degradation.startswith("pil_")
+
+ if self.pil_interpolation:
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
+
+ else:
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
+ interpolation=interpolation_fn)
+
+ def __len__(self):
+ return len(self.base)
+
+ def __getitem__(self, i):
+ example = self.base[i]
+ image = Image.open(example["file_path_"])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ image = np.array(image).astype(np.uint8)
+
+ min_side_len = min(image.shape[:2])
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
+ crop_side_len = int(crop_side_len)
+
+ if self.center_crop:
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
+
+ else:
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
+
+ image = self.cropper(image=image)["image"]
+ image = self.image_rescaler(image=image)["image"]
+
+ if self.pil_interpolation:
+ image_pil = PIL.Image.fromarray(image)
+ LR_image = self.degradation_process(image_pil)
+ LR_image = np.array(LR_image).astype(np.uint8)
+
+ else:
+ LR_image = self.degradation_process(image=image)["image"]
+
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
+
+ return example
+
+
+class ImageNetSRTrain(ImageNetSR):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def get_base(self):
+ with open("ldm/data/imagenet_train_hr_indices.p", "rb") as f:
+ indices = pickle.load(f)
+ dset = ImageNetTrain(process_images=False,)
+ return Subset(dset, indices)
+
+
+class ImageNetSRValidation(ImageNetSR):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def get_base(self):
+ with open("ldm/data/imagenet_val_hr_indices.p", "rb") as f:
+ indices = pickle.load(f)
+ dset = ImageNetValidation(process_images=False,)
+ return Subset(dset, indices)
diff --git a/gligen/ldm/data/imagenet_clsidx_to_label.txt b/gligen/ldm/data/imagenet_clsidx_to_label.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e2fe435526be7e0dd6675885c6c74b2f9276459b
--- /dev/null
+++ b/gligen/ldm/data/imagenet_clsidx_to_label.txt
@@ -0,0 +1,1000 @@
+ 0: 'tench, Tinca tinca',
+ 1: 'goldfish, Carassius auratus',
+ 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
+ 3: 'tiger shark, Galeocerdo cuvieri',
+ 4: 'hammerhead, hammerhead shark',
+ 5: 'electric ray, crampfish, numbfish, torpedo',
+ 6: 'stingray',
+ 7: 'cock',
+ 8: 'hen',
+ 9: 'ostrich, Struthio camelus',
+ 10: 'brambling, Fringilla montifringilla',
+ 11: 'goldfinch, Carduelis carduelis',
+ 12: 'house finch, linnet, Carpodacus mexicanus',
+ 13: 'junco, snowbird',
+ 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
+ 15: 'robin, American robin, Turdus migratorius',
+ 16: 'bulbul',
+ 17: 'jay',
+ 18: 'magpie',
+ 19: 'chickadee',
+ 20: 'water ouzel, dipper',
+ 21: 'kite',
+ 22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
+ 23: 'vulture',
+ 24: 'great grey owl, great gray owl, Strix nebulosa',
+ 25: 'European fire salamander, Salamandra salamandra',
+ 26: 'common newt, Triturus vulgaris',
+ 27: 'eft',
+ 28: 'spotted salamander, Ambystoma maculatum',
+ 29: 'axolotl, mud puppy, Ambystoma mexicanum',
+ 30: 'bullfrog, Rana catesbeiana',
+ 31: 'tree frog, tree-frog',
+ 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
+ 33: 'loggerhead, loggerhead turtle, Caretta caretta',
+ 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
+ 35: 'mud turtle',
+ 36: 'terrapin',
+ 37: 'box turtle, box tortoise',
+ 38: 'banded gecko',
+ 39: 'common iguana, iguana, Iguana iguana',
+ 40: 'American chameleon, anole, Anolis carolinensis',
+ 41: 'whiptail, whiptail lizard',
+ 42: 'agama',
+ 43: 'frilled lizard, Chlamydosaurus kingi',
+ 44: 'alligator lizard',
+ 45: 'Gila monster, Heloderma suspectum',
+ 46: 'green lizard, Lacerta viridis',
+ 47: 'African chameleon, Chamaeleo chamaeleon',
+ 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
+ 49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
+ 50: 'American alligator, Alligator mississipiensis',
+ 51: 'triceratops',
+ 52: 'thunder snake, worm snake, Carphophis amoenus',
+ 53: 'ringneck snake, ring-necked snake, ring snake',
+ 54: 'hognose snake, puff adder, sand viper',
+ 55: 'green snake, grass snake',
+ 56: 'king snake, kingsnake',
+ 57: 'garter snake, grass snake',
+ 58: 'water snake',
+ 59: 'vine snake',
+ 60: 'night snake, Hypsiglena torquata',
+ 61: 'boa constrictor, Constrictor constrictor',
+ 62: 'rock python, rock snake, Python sebae',
+ 63: 'Indian cobra, Naja naja',
+ 64: 'green mamba',
+ 65: 'sea snake',
+ 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
+ 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
+ 68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
+ 69: 'trilobite',
+ 70: 'harvestman, daddy longlegs, Phalangium opilio',
+ 71: 'scorpion',
+ 72: 'black and gold garden spider, Argiope aurantia',
+ 73: 'barn spider, Araneus cavaticus',
+ 74: 'garden spider, Aranea diademata',
+ 75: 'black widow, Latrodectus mactans',
+ 76: 'tarantula',
+ 77: 'wolf spider, hunting spider',
+ 78: 'tick',
+ 79: 'centipede',
+ 80: 'black grouse',
+ 81: 'ptarmigan',
+ 82: 'ruffed grouse, partridge, Bonasa umbellus',
+ 83: 'prairie chicken, prairie grouse, prairie fowl',
+ 84: 'peacock',
+ 85: 'quail',
+ 86: 'partridge',
+ 87: 'African grey, African gray, Psittacus erithacus',
+ 88: 'macaw',
+ 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
+ 90: 'lorikeet',
+ 91: 'coucal',
+ 92: 'bee eater',
+ 93: 'hornbill',
+ 94: 'hummingbird',
+ 95: 'jacamar',
+ 96: 'toucan',
+ 97: 'drake',
+ 98: 'red-breasted merganser, Mergus serrator',
+ 99: 'goose',
+ 100: 'black swan, Cygnus atratus',
+ 101: 'tusker',
+ 102: 'echidna, spiny anteater, anteater',
+ 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
+ 104: 'wallaby, brush kangaroo',
+ 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
+ 106: 'wombat',
+ 107: 'jellyfish',
+ 108: 'sea anemone, anemone',
+ 109: 'brain coral',
+ 110: 'flatworm, platyhelminth',
+ 111: 'nematode, nematode worm, roundworm',
+ 112: 'conch',
+ 113: 'snail',
+ 114: 'slug',
+ 115: 'sea slug, nudibranch',
+ 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
+ 117: 'chambered nautilus, pearly nautilus, nautilus',
+ 118: 'Dungeness crab, Cancer magister',
+ 119: 'rock crab, Cancer irroratus',
+ 120: 'fiddler crab',
+ 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
+ 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
+ 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
+ 124: 'crayfish, crawfish, crawdad, crawdaddy',
+ 125: 'hermit crab',
+ 126: 'isopod',
+ 127: 'white stork, Ciconia ciconia',
+ 128: 'black stork, Ciconia nigra',
+ 129: 'spoonbill',
+ 130: 'flamingo',
+ 131: 'little blue heron, Egretta caerulea',
+ 132: 'American egret, great white heron, Egretta albus',
+ 133: 'bittern',
+ 134: 'crane',
+ 135: 'limpkin, Aramus pictus',
+ 136: 'European gallinule, Porphyrio porphyrio',
+ 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
+ 138: 'bustard',
+ 139: 'ruddy turnstone, Arenaria interpres',
+ 140: 'red-backed sandpiper, dunlin, Erolia alpina',
+ 141: 'redshank, Tringa totanus',
+ 142: 'dowitcher',
+ 143: 'oystercatcher, oyster catcher',
+ 144: 'pelican',
+ 145: 'king penguin, Aptenodytes patagonica',
+ 146: 'albatross, mollymawk',
+ 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
+ 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
+ 149: 'dugong, Dugong dugon',
+ 150: 'sea lion',
+ 151: 'Chihuahua',
+ 152: 'Japanese spaniel',
+ 153: 'Maltese dog, Maltese terrier, Maltese',
+ 154: 'Pekinese, Pekingese, Peke',
+ 155: 'Shih-Tzu',
+ 156: 'Blenheim spaniel',
+ 157: 'papillon',
+ 158: 'toy terrier',
+ 159: 'Rhodesian ridgeback',
+ 160: 'Afghan hound, Afghan',
+ 161: 'basset, basset hound',
+ 162: 'beagle',
+ 163: 'bloodhound, sleuthhound',
+ 164: 'bluetick',
+ 165: 'black-and-tan coonhound',
+ 166: 'Walker hound, Walker foxhound',
+ 167: 'English foxhound',
+ 168: 'redbone',
+ 169: 'borzoi, Russian wolfhound',
+ 170: 'Irish wolfhound',
+ 171: 'Italian greyhound',
+ 172: 'whippet',
+ 173: 'Ibizan hound, Ibizan Podenco',
+ 174: 'Norwegian elkhound, elkhound',
+ 175: 'otterhound, otter hound',
+ 176: 'Saluki, gazelle hound',
+ 177: 'Scottish deerhound, deerhound',
+ 178: 'Weimaraner',
+ 179: 'Staffordshire bullterrier, Staffordshire bull terrier',
+ 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
+ 181: 'Bedlington terrier',
+ 182: 'Border terrier',
+ 183: 'Kerry blue terrier',
+ 184: 'Irish terrier',
+ 185: 'Norfolk terrier',
+ 186: 'Norwich terrier',
+ 187: 'Yorkshire terrier',
+ 188: 'wire-haired fox terrier',
+ 189: 'Lakeland terrier',
+ 190: 'Sealyham terrier, Sealyham',
+ 191: 'Airedale, Airedale terrier',
+ 192: 'cairn, cairn terrier',
+ 193: 'Australian terrier',
+ 194: 'Dandie Dinmont, Dandie Dinmont terrier',
+ 195: 'Boston bull, Boston terrier',
+ 196: 'miniature schnauzer',
+ 197: 'giant schnauzer',
+ 198: 'standard schnauzer',
+ 199: 'Scotch terrier, Scottish terrier, Scottie',
+ 200: 'Tibetan terrier, chrysanthemum dog',
+ 201: 'silky terrier, Sydney silky',
+ 202: 'soft-coated wheaten terrier',
+ 203: 'West Highland white terrier',
+ 204: 'Lhasa, Lhasa apso',
+ 205: 'flat-coated retriever',
+ 206: 'curly-coated retriever',
+ 207: 'golden retriever',
+ 208: 'Labrador retriever',
+ 209: 'Chesapeake Bay retriever',
+ 210: 'German short-haired pointer',
+ 211: 'vizsla, Hungarian pointer',
+ 212: 'English setter',
+ 213: 'Irish setter, red setter',
+ 214: 'Gordon setter',
+ 215: 'Brittany spaniel',
+ 216: 'clumber, clumber spaniel',
+ 217: 'English springer, English springer spaniel',
+ 218: 'Welsh springer spaniel',
+ 219: 'cocker spaniel, English cocker spaniel, cocker',
+ 220: 'Sussex spaniel',
+ 221: 'Irish water spaniel',
+ 222: 'kuvasz',
+ 223: 'schipperke',
+ 224: 'groenendael',
+ 225: 'malinois',
+ 226: 'briard',
+ 227: 'kelpie',
+ 228: 'komondor',
+ 229: 'Old English sheepdog, bobtail',
+ 230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
+ 231: 'collie',
+ 232: 'Border collie',
+ 233: 'Bouvier des Flandres, Bouviers des Flandres',
+ 234: 'Rottweiler',
+ 235: 'German shepherd, German shepherd dog, German police dog, alsatian',
+ 236: 'Doberman, Doberman pinscher',
+ 237: 'miniature pinscher',
+ 238: 'Greater Swiss Mountain dog',
+ 239: 'Bernese mountain dog',
+ 240: 'Appenzeller',
+ 241: 'EntleBucher',
+ 242: 'boxer',
+ 243: 'bull mastiff',
+ 244: 'Tibetan mastiff',
+ 245: 'French bulldog',
+ 246: 'Great Dane',
+ 247: 'Saint Bernard, St Bernard',
+ 248: 'Eskimo dog, husky',
+ 249: 'malamute, malemute, Alaskan malamute',
+ 250: 'Siberian husky',
+ 251: 'dalmatian, coach dog, carriage dog',
+ 252: 'affenpinscher, monkey pinscher, monkey dog',
+ 253: 'basenji',
+ 254: 'pug, pug-dog',
+ 255: 'Leonberg',
+ 256: 'Newfoundland, Newfoundland dog',
+ 257: 'Great Pyrenees',
+ 258: 'Samoyed, Samoyede',
+ 259: 'Pomeranian',
+ 260: 'chow, chow chow',
+ 261: 'keeshond',
+ 262: 'Brabancon griffon',
+ 263: 'Pembroke, Pembroke Welsh corgi',
+ 264: 'Cardigan, Cardigan Welsh corgi',
+ 265: 'toy poodle',
+ 266: 'miniature poodle',
+ 267: 'standard poodle',
+ 268: 'Mexican hairless',
+ 269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
+ 270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
+ 271: 'red wolf, maned wolf, Canis rufus, Canis niger',
+ 272: 'coyote, prairie wolf, brush wolf, Canis latrans',
+ 273: 'dingo, warrigal, warragal, Canis dingo',
+ 274: 'dhole, Cuon alpinus',
+ 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
+ 276: 'hyena, hyaena',
+ 277: 'red fox, Vulpes vulpes',
+ 278: 'kit fox, Vulpes macrotis',
+ 279: 'Arctic fox, white fox, Alopex lagopus',
+ 280: 'grey fox, gray fox, Urocyon cinereoargenteus',
+ 281: 'tabby, tabby cat',
+ 282: 'tiger cat',
+ 283: 'Persian cat',
+ 284: 'Siamese cat, Siamese',
+ 285: 'Egyptian cat',
+ 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
+ 287: 'lynx, catamount',
+ 288: 'leopard, Panthera pardus',
+ 289: 'snow leopard, ounce, Panthera uncia',
+ 290: 'jaguar, panther, Panthera onca, Felis onca',
+ 291: 'lion, king of beasts, Panthera leo',
+ 292: 'tiger, Panthera tigris',
+ 293: 'cheetah, chetah, Acinonyx jubatus',
+ 294: 'brown bear, bruin, Ursus arctos',
+ 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
+ 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
+ 297: 'sloth bear, Melursus ursinus, Ursus ursinus',
+ 298: 'mongoose',
+ 299: 'meerkat, mierkat',
+ 300: 'tiger beetle',
+ 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
+ 302: 'ground beetle, carabid beetle',
+ 303: 'long-horned beetle, longicorn, longicorn beetle',
+ 304: 'leaf beetle, chrysomelid',
+ 305: 'dung beetle',
+ 306: 'rhinoceros beetle',
+ 307: 'weevil',
+ 308: 'fly',
+ 309: 'bee',
+ 310: 'ant, emmet, pismire',
+ 311: 'grasshopper, hopper',
+ 312: 'cricket',
+ 313: 'walking stick, walkingstick, stick insect',
+ 314: 'cockroach, roach',
+ 315: 'mantis, mantid',
+ 316: 'cicada, cicala',
+ 317: 'leafhopper',
+ 318: 'lacewing, lacewing fly',
+ 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
+ 320: 'damselfly',
+ 321: 'admiral',
+ 322: 'ringlet, ringlet butterfly',
+ 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
+ 324: 'cabbage butterfly',
+ 325: 'sulphur butterfly, sulfur butterfly',
+ 326: 'lycaenid, lycaenid butterfly',
+ 327: 'starfish, sea star',
+ 328: 'sea urchin',
+ 329: 'sea cucumber, holothurian',
+ 330: 'wood rabbit, cottontail, cottontail rabbit',
+ 331: 'hare',
+ 332: 'Angora, Angora rabbit',
+ 333: 'hamster',
+ 334: 'porcupine, hedgehog',
+ 335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
+ 336: 'marmot',
+ 337: 'beaver',
+ 338: 'guinea pig, Cavia cobaya',
+ 339: 'sorrel',
+ 340: 'zebra',
+ 341: 'hog, pig, grunter, squealer, Sus scrofa',
+ 342: 'wild boar, boar, Sus scrofa',
+ 343: 'warthog',
+ 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
+ 345: 'ox',
+ 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
+ 347: 'bison',
+ 348: 'ram, tup',
+ 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
+ 350: 'ibex, Capra ibex',
+ 351: 'hartebeest',
+ 352: 'impala, Aepyceros melampus',
+ 353: 'gazelle',
+ 354: 'Arabian camel, dromedary, Camelus dromedarius',
+ 355: 'llama',
+ 356: 'weasel',
+ 357: 'mink',
+ 358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
+ 359: 'black-footed ferret, ferret, Mustela nigripes',
+ 360: 'otter',
+ 361: 'skunk, polecat, wood pussy',
+ 362: 'badger',
+ 363: 'armadillo',
+ 364: 'three-toed sloth, ai, Bradypus tridactylus',
+ 365: 'orangutan, orang, orangutang, Pongo pygmaeus',
+ 366: 'gorilla, Gorilla gorilla',
+ 367: 'chimpanzee, chimp, Pan troglodytes',
+ 368: 'gibbon, Hylobates lar',
+ 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
+ 370: 'guenon, guenon monkey',
+ 371: 'patas, hussar monkey, Erythrocebus patas',
+ 372: 'baboon',
+ 373: 'macaque',
+ 374: 'langur',
+ 375: 'colobus, colobus monkey',
+ 376: 'proboscis monkey, Nasalis larvatus',
+ 377: 'marmoset',
+ 378: 'capuchin, ringtail, Cebus capucinus',
+ 379: 'howler monkey, howler',
+ 380: 'titi, titi monkey',
+ 381: 'spider monkey, Ateles geoffroyi',
+ 382: 'squirrel monkey, Saimiri sciureus',
+ 383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
+ 384: 'indri, indris, Indri indri, Indri brevicaudatus',
+ 385: 'Indian elephant, Elephas maximus',
+ 386: 'African elephant, Loxodonta africana',
+ 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
+ 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
+ 389: 'barracouta, snoek',
+ 390: 'eel',
+ 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
+ 392: 'rock beauty, Holocanthus tricolor',
+ 393: 'anemone fish',
+ 394: 'sturgeon',
+ 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
+ 396: 'lionfish',
+ 397: 'puffer, pufferfish, blowfish, globefish',
+ 398: 'abacus',
+ 399: 'abaya',
+ 400: "academic gown, academic robe, judge's robe",
+ 401: 'accordion, piano accordion, squeeze box',
+ 402: 'acoustic guitar',
+ 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
+ 404: 'airliner',
+ 405: 'airship, dirigible',
+ 406: 'altar',
+ 407: 'ambulance',
+ 408: 'amphibian, amphibious vehicle',
+ 409: 'analog clock',
+ 410: 'apiary, bee house',
+ 411: 'apron',
+ 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
+ 413: 'assault rifle, assault gun',
+ 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
+ 415: 'bakery, bakeshop, bakehouse',
+ 416: 'balance beam, beam',
+ 417: 'balloon',
+ 418: 'ballpoint, ballpoint pen, ballpen, Biro',
+ 419: 'Band Aid',
+ 420: 'banjo',
+ 421: 'bannister, banister, balustrade, balusters, handrail',
+ 422: 'barbell',
+ 423: 'barber chair',
+ 424: 'barbershop',
+ 425: 'barn',
+ 426: 'barometer',
+ 427: 'barrel, cask',
+ 428: 'barrow, garden cart, lawn cart, wheelbarrow',
+ 429: 'baseball',
+ 430: 'basketball',
+ 431: 'bassinet',
+ 432: 'bassoon',
+ 433: 'bathing cap, swimming cap',
+ 434: 'bath towel',
+ 435: 'bathtub, bathing tub, bath, tub',
+ 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
+ 437: 'beacon, lighthouse, beacon light, pharos',
+ 438: 'beaker',
+ 439: 'bearskin, busby, shako',
+ 440: 'beer bottle',
+ 441: 'beer glass',
+ 442: 'bell cote, bell cot',
+ 443: 'bib',
+ 444: 'bicycle-built-for-two, tandem bicycle, tandem',
+ 445: 'bikini, two-piece',
+ 446: 'binder, ring-binder',
+ 447: 'binoculars, field glasses, opera glasses',
+ 448: 'birdhouse',
+ 449: 'boathouse',
+ 450: 'bobsled, bobsleigh, bob',
+ 451: 'bolo tie, bolo, bola tie, bola',
+ 452: 'bonnet, poke bonnet',
+ 453: 'bookcase',
+ 454: 'bookshop, bookstore, bookstall',
+ 455: 'bottlecap',
+ 456: 'bow',
+ 457: 'bow tie, bow-tie, bowtie',
+ 458: 'brass, memorial tablet, plaque',
+ 459: 'brassiere, bra, bandeau',
+ 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
+ 461: 'breastplate, aegis, egis',
+ 462: 'broom',
+ 463: 'bucket, pail',
+ 464: 'buckle',
+ 465: 'bulletproof vest',
+ 466: 'bullet train, bullet',
+ 467: 'butcher shop, meat market',
+ 468: 'cab, hack, taxi, taxicab',
+ 469: 'caldron, cauldron',
+ 470: 'candle, taper, wax light',
+ 471: 'cannon',
+ 472: 'canoe',
+ 473: 'can opener, tin opener',
+ 474: 'cardigan',
+ 475: 'car mirror',
+ 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
+ 477: "carpenter's kit, tool kit",
+ 478: 'carton',
+ 479: 'car wheel',
+ 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
+ 481: 'cassette',
+ 482: 'cassette player',
+ 483: 'castle',
+ 484: 'catamaran',
+ 485: 'CD player',
+ 486: 'cello, violoncello',
+ 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
+ 488: 'chain',
+ 489: 'chainlink fence',
+ 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
+ 491: 'chain saw, chainsaw',
+ 492: 'chest',
+ 493: 'chiffonier, commode',
+ 494: 'chime, bell, gong',
+ 495: 'china cabinet, china closet',
+ 496: 'Christmas stocking',
+ 497: 'church, church building',
+ 498: 'cinema, movie theater, movie theatre, movie house, picture palace',
+ 499: 'cleaver, meat cleaver, chopper',
+ 500: 'cliff dwelling',
+ 501: 'cloak',
+ 502: 'clog, geta, patten, sabot',
+ 503: 'cocktail shaker',
+ 504: 'coffee mug',
+ 505: 'coffeepot',
+ 506: 'coil, spiral, volute, whorl, helix',
+ 507: 'combination lock',
+ 508: 'computer keyboard, keypad',
+ 509: 'confectionery, confectionary, candy store',
+ 510: 'container ship, containership, container vessel',
+ 511: 'convertible',
+ 512: 'corkscrew, bottle screw',
+ 513: 'cornet, horn, trumpet, trump',
+ 514: 'cowboy boot',
+ 515: 'cowboy hat, ten-gallon hat',
+ 516: 'cradle',
+ 517: 'crane',
+ 518: 'crash helmet',
+ 519: 'crate',
+ 520: 'crib, cot',
+ 521: 'Crock Pot',
+ 522: 'croquet ball',
+ 523: 'crutch',
+ 524: 'cuirass',
+ 525: 'dam, dike, dyke',
+ 526: 'desk',
+ 527: 'desktop computer',
+ 528: 'dial telephone, dial phone',
+ 529: 'diaper, nappy, napkin',
+ 530: 'digital clock',
+ 531: 'digital watch',
+ 532: 'dining table, board',
+ 533: 'dishrag, dishcloth',
+ 534: 'dishwasher, dish washer, dishwashing machine',
+ 535: 'disk brake, disc brake',
+ 536: 'dock, dockage, docking facility',
+ 537: 'dogsled, dog sled, dog sleigh',
+ 538: 'dome',
+ 539: 'doormat, welcome mat',
+ 540: 'drilling platform, offshore rig',
+ 541: 'drum, membranophone, tympan',
+ 542: 'drumstick',
+ 543: 'dumbbell',
+ 544: 'Dutch oven',
+ 545: 'electric fan, blower',
+ 546: 'electric guitar',
+ 547: 'electric locomotive',
+ 548: 'entertainment center',
+ 549: 'envelope',
+ 550: 'espresso maker',
+ 551: 'face powder',
+ 552: 'feather boa, boa',
+ 553: 'file, file cabinet, filing cabinet',
+ 554: 'fireboat',
+ 555: 'fire engine, fire truck',
+ 556: 'fire screen, fireguard',
+ 557: 'flagpole, flagstaff',
+ 558: 'flute, transverse flute',
+ 559: 'folding chair',
+ 560: 'football helmet',
+ 561: 'forklift',
+ 562: 'fountain',
+ 563: 'fountain pen',
+ 564: 'four-poster',
+ 565: 'freight car',
+ 566: 'French horn, horn',
+ 567: 'frying pan, frypan, skillet',
+ 568: 'fur coat',
+ 569: 'garbage truck, dustcart',
+ 570: 'gasmask, respirator, gas helmet',
+ 571: 'gas pump, gasoline pump, petrol pump, island dispenser',
+ 572: 'goblet',
+ 573: 'go-kart',
+ 574: 'golf ball',
+ 575: 'golfcart, golf cart',
+ 576: 'gondola',
+ 577: 'gong, tam-tam',
+ 578: 'gown',
+ 579: 'grand piano, grand',
+ 580: 'greenhouse, nursery, glasshouse',
+ 581: 'grille, radiator grille',
+ 582: 'grocery store, grocery, food market, market',
+ 583: 'guillotine',
+ 584: 'hair slide',
+ 585: 'hair spray',
+ 586: 'half track',
+ 587: 'hammer',
+ 588: 'hamper',
+ 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
+ 590: 'hand-held computer, hand-held microcomputer',
+ 591: 'handkerchief, hankie, hanky, hankey',
+ 592: 'hard disc, hard disk, fixed disk',
+ 593: 'harmonica, mouth organ, harp, mouth harp',
+ 594: 'harp',
+ 595: 'harvester, reaper',
+ 596: 'hatchet',
+ 597: 'holster',
+ 598: 'home theater, home theatre',
+ 599: 'honeycomb',
+ 600: 'hook, claw',
+ 601: 'hoopskirt, crinoline',
+ 602: 'horizontal bar, high bar',
+ 603: 'horse cart, horse-cart',
+ 604: 'hourglass',
+ 605: 'iPod',
+ 606: 'iron, smoothing iron',
+ 607: "jack-o'-lantern",
+ 608: 'jean, blue jean, denim',
+ 609: 'jeep, landrover',
+ 610: 'jersey, T-shirt, tee shirt',
+ 611: 'jigsaw puzzle',
+ 612: 'jinrikisha, ricksha, rickshaw',
+ 613: 'joystick',
+ 614: 'kimono',
+ 615: 'knee pad',
+ 616: 'knot',
+ 617: 'lab coat, laboratory coat',
+ 618: 'ladle',
+ 619: 'lampshade, lamp shade',
+ 620: 'laptop, laptop computer',
+ 621: 'lawn mower, mower',
+ 622: 'lens cap, lens cover',
+ 623: 'letter opener, paper knife, paperknife',
+ 624: 'library',
+ 625: 'lifeboat',
+ 626: 'lighter, light, igniter, ignitor',
+ 627: 'limousine, limo',
+ 628: 'liner, ocean liner',
+ 629: 'lipstick, lip rouge',
+ 630: 'Loafer',
+ 631: 'lotion',
+ 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
+ 633: "loupe, jeweler's loupe",
+ 634: 'lumbermill, sawmill',
+ 635: 'magnetic compass',
+ 636: 'mailbag, postbag',
+ 637: 'mailbox, letter box',
+ 638: 'maillot',
+ 639: 'maillot, tank suit',
+ 640: 'manhole cover',
+ 641: 'maraca',
+ 642: 'marimba, xylophone',
+ 643: 'mask',
+ 644: 'matchstick',
+ 645: 'maypole',
+ 646: 'maze, labyrinth',
+ 647: 'measuring cup',
+ 648: 'medicine chest, medicine cabinet',
+ 649: 'megalith, megalithic structure',
+ 650: 'microphone, mike',
+ 651: 'microwave, microwave oven',
+ 652: 'military uniform',
+ 653: 'milk can',
+ 654: 'minibus',
+ 655: 'miniskirt, mini',
+ 656: 'minivan',
+ 657: 'missile',
+ 658: 'mitten',
+ 659: 'mixing bowl',
+ 660: 'mobile home, manufactured home',
+ 661: 'Model T',
+ 662: 'modem',
+ 663: 'monastery',
+ 664: 'monitor',
+ 665: 'moped',
+ 666: 'mortar',
+ 667: 'mortarboard',
+ 668: 'mosque',
+ 669: 'mosquito net',
+ 670: 'motor scooter, scooter',
+ 671: 'mountain bike, all-terrain bike, off-roader',
+ 672: 'mountain tent',
+ 673: 'mouse, computer mouse',
+ 674: 'mousetrap',
+ 675: 'moving van',
+ 676: 'muzzle',
+ 677: 'nail',
+ 678: 'neck brace',
+ 679: 'necklace',
+ 680: 'nipple',
+ 681: 'notebook, notebook computer',
+ 682: 'obelisk',
+ 683: 'oboe, hautboy, hautbois',
+ 684: 'ocarina, sweet potato',
+ 685: 'odometer, hodometer, mileometer, milometer',
+ 686: 'oil filter',
+ 687: 'organ, pipe organ',
+ 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
+ 689: 'overskirt',
+ 690: 'oxcart',
+ 691: 'oxygen mask',
+ 692: 'packet',
+ 693: 'paddle, boat paddle',
+ 694: 'paddlewheel, paddle wheel',
+ 695: 'padlock',
+ 696: 'paintbrush',
+ 697: "pajama, pyjama, pj's, jammies",
+ 698: 'palace',
+ 699: 'panpipe, pandean pipe, syrinx',
+ 700: 'paper towel',
+ 701: 'parachute, chute',
+ 702: 'parallel bars, bars',
+ 703: 'park bench',
+ 704: 'parking meter',
+ 705: 'passenger car, coach, carriage',
+ 706: 'patio, terrace',
+ 707: 'pay-phone, pay-station',
+ 708: 'pedestal, plinth, footstall',
+ 709: 'pencil box, pencil case',
+ 710: 'pencil sharpener',
+ 711: 'perfume, essence',
+ 712: 'Petri dish',
+ 713: 'photocopier',
+ 714: 'pick, plectrum, plectron',
+ 715: 'pickelhaube',
+ 716: 'picket fence, paling',
+ 717: 'pickup, pickup truck',
+ 718: 'pier',
+ 719: 'piggy bank, penny bank',
+ 720: 'pill bottle',
+ 721: 'pillow',
+ 722: 'ping-pong ball',
+ 723: 'pinwheel',
+ 724: 'pirate, pirate ship',
+ 725: 'pitcher, ewer',
+ 726: "plane, carpenter's plane, woodworking plane",
+ 727: 'planetarium',
+ 728: 'plastic bag',
+ 729: 'plate rack',
+ 730: 'plow, plough',
+ 731: "plunger, plumber's helper",
+ 732: 'Polaroid camera, Polaroid Land camera',
+ 733: 'pole',
+ 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
+ 735: 'poncho',
+ 736: 'pool table, billiard table, snooker table',
+ 737: 'pop bottle, soda bottle',
+ 738: 'pot, flowerpot',
+ 739: "potter's wheel",
+ 740: 'power drill',
+ 741: 'prayer rug, prayer mat',
+ 742: 'printer',
+ 743: 'prison, prison house',
+ 744: 'projectile, missile',
+ 745: 'projector',
+ 746: 'puck, hockey puck',
+ 747: 'punching bag, punch bag, punching ball, punchball',
+ 748: 'purse',
+ 749: 'quill, quill pen',
+ 750: 'quilt, comforter, comfort, puff',
+ 751: 'racer, race car, racing car',
+ 752: 'racket, racquet',
+ 753: 'radiator',
+ 754: 'radio, wireless',
+ 755: 'radio telescope, radio reflector',
+ 756: 'rain barrel',
+ 757: 'recreational vehicle, RV, R.V.',
+ 758: 'reel',
+ 759: 'reflex camera',
+ 760: 'refrigerator, icebox',
+ 761: 'remote control, remote',
+ 762: 'restaurant, eating house, eating place, eatery',
+ 763: 'revolver, six-gun, six-shooter',
+ 764: 'rifle',
+ 765: 'rocking chair, rocker',
+ 766: 'rotisserie',
+ 767: 'rubber eraser, rubber, pencil eraser',
+ 768: 'rugby ball',
+ 769: 'rule, ruler',
+ 770: 'running shoe',
+ 771: 'safe',
+ 772: 'safety pin',
+ 773: 'saltshaker, salt shaker',
+ 774: 'sandal',
+ 775: 'sarong',
+ 776: 'sax, saxophone',
+ 777: 'scabbard',
+ 778: 'scale, weighing machine',
+ 779: 'school bus',
+ 780: 'schooner',
+ 781: 'scoreboard',
+ 782: 'screen, CRT screen',
+ 783: 'screw',
+ 784: 'screwdriver',
+ 785: 'seat belt, seatbelt',
+ 786: 'sewing machine',
+ 787: 'shield, buckler',
+ 788: 'shoe shop, shoe-shop, shoe store',
+ 789: 'shoji',
+ 790: 'shopping basket',
+ 791: 'shopping cart',
+ 792: 'shovel',
+ 793: 'shower cap',
+ 794: 'shower curtain',
+ 795: 'ski',
+ 796: 'ski mask',
+ 797: 'sleeping bag',
+ 798: 'slide rule, slipstick',
+ 799: 'sliding door',
+ 800: 'slot, one-armed bandit',
+ 801: 'snorkel',
+ 802: 'snowmobile',
+ 803: 'snowplow, snowplough',
+ 804: 'soap dispenser',
+ 805: 'soccer ball',
+ 806: 'sock',
+ 807: 'solar dish, solar collector, solar furnace',
+ 808: 'sombrero',
+ 809: 'soup bowl',
+ 810: 'space bar',
+ 811: 'space heater',
+ 812: 'space shuttle',
+ 813: 'spatula',
+ 814: 'speedboat',
+ 815: "spider web, spider's web",
+ 816: 'spindle',
+ 817: 'sports car, sport car',
+ 818: 'spotlight, spot',
+ 819: 'stage',
+ 820: 'steam locomotive',
+ 821: 'steel arch bridge',
+ 822: 'steel drum',
+ 823: 'stethoscope',
+ 824: 'stole',
+ 825: 'stone wall',
+ 826: 'stopwatch, stop watch',
+ 827: 'stove',
+ 828: 'strainer',
+ 829: 'streetcar, tram, tramcar, trolley, trolley car',
+ 830: 'stretcher',
+ 831: 'studio couch, day bed',
+ 832: 'stupa, tope',
+ 833: 'submarine, pigboat, sub, U-boat',
+ 834: 'suit, suit of clothes',
+ 835: 'sundial',
+ 836: 'sunglass',
+ 837: 'sunglasses, dark glasses, shades',
+ 838: 'sunscreen, sunblock, sun blocker',
+ 839: 'suspension bridge',
+ 840: 'swab, swob, mop',
+ 841: 'sweatshirt',
+ 842: 'swimming trunks, bathing trunks',
+ 843: 'swing',
+ 844: 'switch, electric switch, electrical switch',
+ 845: 'syringe',
+ 846: 'table lamp',
+ 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
+ 848: 'tape player',
+ 849: 'teapot',
+ 850: 'teddy, teddy bear',
+ 851: 'television, television system',
+ 852: 'tennis ball',
+ 853: 'thatch, thatched roof',
+ 854: 'theater curtain, theatre curtain',
+ 855: 'thimble',
+ 856: 'thresher, thrasher, threshing machine',
+ 857: 'throne',
+ 858: 'tile roof',
+ 859: 'toaster',
+ 860: 'tobacco shop, tobacconist shop, tobacconist',
+ 861: 'toilet seat',
+ 862: 'torch',
+ 863: 'totem pole',
+ 864: 'tow truck, tow car, wrecker',
+ 865: 'toyshop',
+ 866: 'tractor',
+ 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
+ 868: 'tray',
+ 869: 'trench coat',
+ 870: 'tricycle, trike, velocipede',
+ 871: 'trimaran',
+ 872: 'tripod',
+ 873: 'triumphal arch',
+ 874: 'trolleybus, trolley coach, trackless trolley',
+ 875: 'trombone',
+ 876: 'tub, vat',
+ 877: 'turnstile',
+ 878: 'typewriter keyboard',
+ 879: 'umbrella',
+ 880: 'unicycle, monocycle',
+ 881: 'upright, upright piano',
+ 882: 'vacuum, vacuum cleaner',
+ 883: 'vase',
+ 884: 'vault',
+ 885: 'velvet',
+ 886: 'vending machine',
+ 887: 'vestment',
+ 888: 'viaduct',
+ 889: 'violin, fiddle',
+ 890: 'volleyball',
+ 891: 'waffle iron',
+ 892: 'wall clock',
+ 893: 'wallet, billfold, notecase, pocketbook',
+ 894: 'wardrobe, closet, press',
+ 895: 'warplane, military plane',
+ 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
+ 897: 'washer, automatic washer, washing machine',
+ 898: 'water bottle',
+ 899: 'water jug',
+ 900: 'water tower',
+ 901: 'whiskey jug',
+ 902: 'whistle',
+ 903: 'wig',
+ 904: 'window screen',
+ 905: 'window shade',
+ 906: 'Windsor tie',
+ 907: 'wine bottle',
+ 908: 'wing',
+ 909: 'wok',
+ 910: 'wooden spoon',
+ 911: 'wool, woolen, woollen',
+ 912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
+ 913: 'wreck',
+ 914: 'yawl',
+ 915: 'yurt',
+ 916: 'web site, website, internet site, site',
+ 917: 'comic book',
+ 918: 'crossword puzzle, crossword',
+ 919: 'street sign',
+ 920: 'traffic light, traffic signal, stoplight',
+ 921: 'book jacket, dust cover, dust jacket, dust wrapper',
+ 922: 'menu',
+ 923: 'plate',
+ 924: 'guacamole',
+ 925: 'consomme',
+ 926: 'hot pot, hotpot',
+ 927: 'trifle',
+ 928: 'ice cream, icecream',
+ 929: 'ice lolly, lolly, lollipop, popsicle',
+ 930: 'French loaf',
+ 931: 'bagel, beigel',
+ 932: 'pretzel',
+ 933: 'cheeseburger',
+ 934: 'hotdog, hot dog, red hot',
+ 935: 'mashed potato',
+ 936: 'head cabbage',
+ 937: 'broccoli',
+ 938: 'cauliflower',
+ 939: 'zucchini, courgette',
+ 940: 'spaghetti squash',
+ 941: 'acorn squash',
+ 942: 'butternut squash',
+ 943: 'cucumber, cuke',
+ 944: 'artichoke, globe artichoke',
+ 945: 'bell pepper',
+ 946: 'cardoon',
+ 947: 'mushroom',
+ 948: 'Granny Smith',
+ 949: 'strawberry',
+ 950: 'orange',
+ 951: 'lemon',
+ 952: 'fig',
+ 953: 'pineapple, ananas',
+ 954: 'banana',
+ 955: 'jackfruit, jak, jack',
+ 956: 'custard apple',
+ 957: 'pomegranate',
+ 958: 'hay',
+ 959: 'carbonara',
+ 960: 'chocolate sauce, chocolate syrup',
+ 961: 'dough',
+ 962: 'meat loaf, meatloaf',
+ 963: 'pizza, pizza pie',
+ 964: 'potpie',
+ 965: 'burrito',
+ 966: 'red wine',
+ 967: 'espresso',
+ 968: 'cup',
+ 969: 'eggnog',
+ 970: 'alp',
+ 971: 'bubble',
+ 972: 'cliff, drop, drop-off',
+ 973: 'coral reef',
+ 974: 'geyser',
+ 975: 'lakeside, lakeshore',
+ 976: 'promontory, headland, head, foreland',
+ 977: 'sandbar, sand bar',
+ 978: 'seashore, coast, seacoast, sea-coast',
+ 979: 'valley, vale',
+ 980: 'volcano',
+ 981: 'ballplayer, baseball player',
+ 982: 'groom, bridegroom',
+ 983: 'scuba diver',
+ 984: 'rapeseed',
+ 985: 'daisy',
+ 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
+ 987: 'corn',
+ 988: 'acorn',
+ 989: 'hip, rose hip, rosehip',
+ 990: 'buckeye, horse chestnut, conker',
+ 991: 'coral fungus',
+ 992: 'agaric',
+ 993: 'gyromitra',
+ 994: 'stinkhorn, carrion fungus',
+ 995: 'earthstar',
+ 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
+ 997: 'bolete',
+ 998: 'ear, spike, capitulum',
+ 999: 'toilet tissue, toilet paper, bathroom tissue'
\ No newline at end of file
diff --git a/gligen/ldm/data/index_synset.yaml b/gligen/ldm/data/index_synset.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..635ea71a0da40d42072fee110143520daa203ce6
--- /dev/null
+++ b/gligen/ldm/data/index_synset.yaml
@@ -0,0 +1,1000 @@
+0: n01440764
+1: n01443537
+2: n01484850
+3: n01491361
+4: n01494475
+5: n01496331
+6: n01498041
+7: n01514668
+8: n07646067
+9: n01518878
+10: n01530575
+11: n01531178
+12: n01532829
+13: n01534433
+14: n01537544
+15: n01558993
+16: n01560419
+17: n01580077
+18: n01582220
+19: n01592084
+20: n01601694
+21: n13382471
+22: n01614925
+23: n01616318
+24: n01622779
+25: n01629819
+26: n01630670
+27: n01631663
+28: n01632458
+29: n01632777
+30: n01641577
+31: n01644373
+32: n01644900
+33: n01664065
+34: n01665541
+35: n01667114
+36: n01667778
+37: n01669191
+38: n01675722
+39: n01677366
+40: n01682714
+41: n01685808
+42: n01687978
+43: n01688243
+44: n01689811
+45: n01692333
+46: n01693334
+47: n01694178
+48: n01695060
+49: n01697457
+50: n01698640
+51: n01704323
+52: n01728572
+53: n01728920
+54: n01729322
+55: n01729977
+56: n01734418
+57: n01735189
+58: n01737021
+59: n01739381
+60: n01740131
+61: n01742172
+62: n01744401
+63: n01748264
+64: n01749939
+65: n01751748
+66: n01753488
+67: n01755581
+68: n01756291
+69: n01768244
+70: n01770081
+71: n01770393
+72: n01773157
+73: n01773549
+74: n01773797
+75: n01774384
+76: n01774750
+77: n01775062
+78: n04432308
+79: n01784675
+80: n01795545
+81: n01796340
+82: n01797886
+83: n01798484
+84: n01806143
+85: n07647321
+86: n07647496
+87: n01817953
+88: n01818515
+89: n01819313
+90: n01820546
+91: n01824575
+92: n01828970
+93: n01829413
+94: n01833805
+95: n01843065
+96: n01843383
+97: n01847000
+98: n01855032
+99: n07646821
+100: n01860187
+101: n01871265
+102: n01872772
+103: n01873310
+104: n01877812
+105: n01882714
+106: n01883070
+107: n01910747
+108: n01914609
+109: n01917289
+110: n01924916
+111: n01930112
+112: n01943899
+113: n01944390
+114: n13719102
+115: n01950731
+116: n01955084
+117: n01968897
+118: n01978287
+119: n01978455
+120: n01980166
+121: n01981276
+122: n01983481
+123: n01984695
+124: n01985128
+125: n01986214
+126: n01990800
+127: n02002556
+128: n02002724
+129: n02006656
+130: n02007558
+131: n02009229
+132: n02009912
+133: n02011460
+134: n03126707
+135: n02013706
+136: n02017213
+137: n02018207
+138: n02018795
+139: n02025239
+140: n02027492
+141: n02028035
+142: n02033041
+143: n02037110
+144: n02051845
+145: n02056570
+146: n02058221
+147: n02066245
+148: n02071294
+149: n02074367
+150: n02077923
+151: n08742578
+152: n02085782
+153: n02085936
+154: n02086079
+155: n02086240
+156: n02086646
+157: n02086910
+158: n02087046
+159: n02087394
+160: n02088094
+161: n02088238
+162: n02088364
+163: n02088466
+164: n02088632
+165: n02089078
+166: n02089867
+167: n02089973
+168: n02090379
+169: n02090622
+170: n02090721
+171: n02091032
+172: n02091134
+173: n02091244
+174: n02091467
+175: n02091635
+176: n02091831
+177: n02092002
+178: n02092339
+179: n02093256
+180: n02093428
+181: n02093647
+182: n02093754
+183: n02093859
+184: n02093991
+185: n02094114
+186: n02094258
+187: n02094433
+188: n02095314
+189: n02095570
+190: n02095889
+191: n02096051
+192: n02096177
+193: n02096294
+194: n02096437
+195: n02096585
+196: n02097047
+197: n02097130
+198: n02097209
+199: n02097298
+200: n02097474
+201: n02097658
+202: n02098105
+203: n02098286
+204: n02098413
+205: n02099267
+206: n02099429
+207: n02099601
+208: n02099712
+209: n02099849
+210: n02100236
+211: n02100583
+212: n02100735
+213: n02100877
+214: n02101006
+215: n02101388
+216: n02101556
+217: n02102040
+218: n02102177
+219: n02102318
+220: n02102480
+221: n02102973
+222: n02104029
+223: n02104365
+224: n02105056
+225: n02105162
+226: n02105251
+227: n02105412
+228: n02105505
+229: n02105641
+230: n02105855
+231: n02106030
+232: n02106166
+233: n02106382
+234: n02106550
+235: n02106662
+236: n02107142
+237: n02107312
+238: n02107574
+239: n02107683
+240: n02107908
+241: n02108000
+242: n02108089
+243: n02108422
+244: n02108551
+245: n02108915
+246: n02109047
+247: n02109525
+248: n02109961
+249: n02110063
+250: n02110185
+251: n02110341
+252: n02110627
+253: n02110806
+254: n02110958
+255: n02111129
+256: n02111277
+257: n02111500
+258: n02111889
+259: n02112018
+260: n02112137
+261: n02112350
+262: n02112706
+263: n02113023
+264: n02113186
+265: n02113624
+266: n02113712
+267: n02113799
+268: n02113978
+269: n02114367
+270: n02114548
+271: n02114712
+272: n02114855
+273: n02115641
+274: n02115913
+275: n02116738
+276: n02117135
+277: n02119022
+278: n02119789
+279: n02120079
+280: n02120505
+281: n02123045
+282: n02123159
+283: n02123394
+284: n02123597
+285: n02124075
+286: n02125311
+287: n02127052
+288: n02128385
+289: n02128757
+290: n02128925
+291: n02129165
+292: n02129604
+293: n02130308
+294: n02132136
+295: n02133161
+296: n02134084
+297: n02134418
+298: n02137549
+299: n02138441
+300: n02165105
+301: n02165456
+302: n02167151
+303: n02168699
+304: n02169497
+305: n02172182
+306: n02174001
+307: n02177972
+308: n03373237
+309: n07975909
+310: n02219486
+311: n02226429
+312: n02229544
+313: n02231487
+314: n02233338
+315: n02236044
+316: n02256656
+317: n02259212
+318: n02264363
+319: n02268443
+320: n02268853
+321: n02276258
+322: n02277742
+323: n02279972
+324: n02280649
+325: n02281406
+326: n02281787
+327: n02317335
+328: n02319095
+329: n02321529
+330: n02325366
+331: n02326432
+332: n02328150
+333: n02342885
+334: n02346627
+335: n02356798
+336: n02361337
+337: n05262120
+338: n02364673
+339: n02389026
+340: n02391049
+341: n02395406
+342: n02396427
+343: n02397096
+344: n02398521
+345: n02403003
+346: n02408429
+347: n02410509
+348: n02412080
+349: n02415577
+350: n02417914
+351: n02422106
+352: n02422699
+353: n02423022
+354: n02437312
+355: n02437616
+356: n10771990
+357: n14765497
+358: n02443114
+359: n02443484
+360: n14765785
+361: n02445715
+362: n02447366
+363: n02454379
+364: n02457408
+365: n02480495
+366: n02480855
+367: n02481823
+368: n02483362
+369: n02483708
+370: n02484975
+371: n02486261
+372: n02486410
+373: n02487347
+374: n02488291
+375: n02488702
+376: n02489166
+377: n02490219
+378: n02492035
+379: n02492660
+380: n02493509
+381: n02493793
+382: n02494079
+383: n02497673
+384: n02500267
+385: n02504013
+386: n02504458
+387: n02509815
+388: n02510455
+389: n02514041
+390: n07783967
+391: n02536864
+392: n02606052
+393: n02607072
+394: n02640242
+395: n02641379
+396: n02643566
+397: n02655020
+398: n02666347
+399: n02667093
+400: n02669723
+401: n02672831
+402: n02676566
+403: n02687172
+404: n02690373
+405: n02692877
+406: n02699494
+407: n02701002
+408: n02704792
+409: n02708093
+410: n02727426
+411: n08496334
+412: n02747177
+413: n02749479
+414: n02769748
+415: n02776631
+416: n02777292
+417: n02782329
+418: n02783161
+419: n02786058
+420: n02787622
+421: n02788148
+422: n02790996
+423: n02791124
+424: n02791270
+425: n02793495
+426: n02794156
+427: n02795169
+428: n02797295
+429: n02799071
+430: n02802426
+431: n02804515
+432: n02804610
+433: n02807133
+434: n02808304
+435: n02808440
+436: n02814533
+437: n02814860
+438: n02815834
+439: n02817516
+440: n02823428
+441: n02823750
+442: n02825657
+443: n02834397
+444: n02835271
+445: n02837789
+446: n02840245
+447: n02841315
+448: n02843684
+449: n02859443
+450: n02860847
+451: n02865351
+452: n02869837
+453: n02870880
+454: n02871525
+455: n02877765
+456: n02880308
+457: n02883205
+458: n02892201
+459: n02892767
+460: n02894605
+461: n02895154
+462: n12520864
+463: n02909870
+464: n02910353
+465: n02916936
+466: n02917067
+467: n02927161
+468: n02930766
+469: n02939185
+470: n02948072
+471: n02950826
+472: n02951358
+473: n02951585
+474: n02963159
+475: n02965783
+476: n02966193
+477: n02966687
+478: n02971356
+479: n02974003
+480: n02977058
+481: n02978881
+482: n02979186
+483: n02980441
+484: n02981792
+485: n02988304
+486: n02992211
+487: n02992529
+488: n13652994
+489: n03000134
+490: n03000247
+491: n03000684
+492: n03014705
+493: n03016953
+494: n03017168
+495: n03018349
+496: n03026506
+497: n03028079
+498: n03032252
+499: n03041632
+500: n03042490
+501: n03045698
+502: n03047690
+503: n03062245
+504: n03063599
+505: n03063689
+506: n03065424
+507: n03075370
+508: n03085013
+509: n03089624
+510: n03095699
+511: n03100240
+512: n03109150
+513: n03110669
+514: n03124043
+515: n03124170
+516: n15142452
+517: n03126707
+518: n03127747
+519: n03127925
+520: n03131574
+521: n03133878
+522: n03134739
+523: n03141823
+524: n03146219
+525: n03160309
+526: n03179701
+527: n03180011
+528: n03187595
+529: n03188531
+530: n03196217
+531: n03197337
+532: n03201208
+533: n03207743
+534: n03207941
+535: n03208938
+536: n03216828
+537: n03218198
+538: n13872072
+539: n03223299
+540: n03240683
+541: n03249569
+542: n07647870
+543: n03255030
+544: n03259401
+545: n03271574
+546: n03272010
+547: n03272562
+548: n03290653
+549: n13869788
+550: n03297495
+551: n03314780
+552: n03325584
+553: n03337140
+554: n03344393
+555: n03345487
+556: n03347037
+557: n03355925
+558: n03372029
+559: n03376595
+560: n03379051
+561: n03384352
+562: n03388043
+563: n03388183
+564: n03388549
+565: n03393912
+566: n03394916
+567: n03400231
+568: n03404251
+569: n03417042
+570: n03424325
+571: n03425413
+572: n03443371
+573: n03444034
+574: n03445777
+575: n03445924
+576: n03447447
+577: n03447721
+578: n08286342
+579: n03452741
+580: n03457902
+581: n03459775
+582: n03461385
+583: n03467068
+584: n03476684
+585: n03476991
+586: n03478589
+587: n03482001
+588: n03482405
+589: n03483316
+590: n03485407
+591: n03485794
+592: n03492542
+593: n03494278
+594: n03495570
+595: n10161363
+596: n03498962
+597: n03527565
+598: n03529860
+599: n09218315
+600: n03532672
+601: n03534580
+602: n03535780
+603: n03538406
+604: n03544143
+605: n03584254
+606: n03584829
+607: n03590841
+608: n03594734
+609: n03594945
+610: n03595614
+611: n03598930
+612: n03599486
+613: n03602883
+614: n03617480
+615: n03623198
+616: n15102712
+617: n03630383
+618: n03633091
+619: n03637318
+620: n03642806
+621: n03649909
+622: n03657121
+623: n03658185
+624: n07977870
+625: n03662601
+626: n03666591
+627: n03670208
+628: n03673027
+629: n03676483
+630: n03680355
+631: n03690938
+632: n03691459
+633: n03692522
+634: n03697007
+635: n03706229
+636: n03709823
+637: n03710193
+638: n03710637
+639: n03710721
+640: n03717622
+641: n03720891
+642: n03721384
+643: n03725035
+644: n03729826
+645: n03733131
+646: n03733281
+647: n03733805
+648: n03742115
+649: n03743016
+650: n03759954
+651: n03761084
+652: n03763968
+653: n03764736
+654: n03769881
+655: n03770439
+656: n03770679
+657: n03773504
+658: n03775071
+659: n03775546
+660: n03776460
+661: n03777568
+662: n03777754
+663: n03781244
+664: n03782006
+665: n03785016
+666: n14955889
+667: n03787032
+668: n03788195
+669: n03788365
+670: n03791053
+671: n03792782
+672: n03792972
+673: n03793489
+674: n03794056
+675: n03796401
+676: n03803284
+677: n13652335
+678: n03814639
+679: n03814906
+680: n03825788
+681: n03832673
+682: n03837869
+683: n03838899
+684: n03840681
+685: n03841143
+686: n03843555
+687: n03854065
+688: n03857828
+689: n03866082
+690: n03868242
+691: n03868863
+692: n07281099
+693: n03873416
+694: n03874293
+695: n03874599
+696: n03876231
+697: n03877472
+698: n08053121
+699: n03884397
+700: n03887697
+701: n03888257
+702: n03888605
+703: n03891251
+704: n03891332
+705: n03895866
+706: n03899768
+707: n03902125
+708: n03903868
+709: n03908618
+710: n03908714
+711: n03916031
+712: n03920288
+713: n03924679
+714: n03929660
+715: n03929855
+716: n03930313
+717: n03930630
+718: n03934042
+719: n03935335
+720: n03937543
+721: n03938244
+722: n03942813
+723: n03944341
+724: n03947888
+725: n03950228
+726: n03954731
+727: n03956157
+728: n03958227
+729: n03961711
+730: n03967562
+731: n03970156
+732: n03976467
+733: n08620881
+734: n03977966
+735: n03980874
+736: n03982430
+737: n03983396
+738: n03991062
+739: n03992509
+740: n03995372
+741: n03998194
+742: n04004767
+743: n13937284
+744: n04008634
+745: n04009801
+746: n04019541
+747: n04023962
+748: n13413294
+749: n04033901
+750: n04033995
+751: n04037443
+752: n04039381
+753: n09403211
+754: n04041544
+755: n04044716
+756: n04049303
+757: n04065272
+758: n07056680
+759: n04069434
+760: n04070727
+761: n04074963
+762: n04081281
+763: n04086273
+764: n04090263
+765: n04099969
+766: n04111531
+767: n04116512
+768: n04118538
+769: n04118776
+770: n04120489
+771: n04125116
+772: n04127249
+773: n04131690
+774: n04133789
+775: n04136333
+776: n04141076
+777: n04141327
+778: n04141975
+779: n04146614
+780: n04147291
+781: n04149813
+782: n04152593
+783: n04154340
+784: n07917272
+785: n04162706
+786: n04179913
+787: n04192698
+788: n04200800
+789: n04201297
+790: n04204238
+791: n04204347
+792: n04208427
+793: n04209133
+794: n04209239
+795: n04228054
+796: n04229816
+797: n04235860
+798: n04238763
+799: n04239074
+800: n04243546
+801: n04251144
+802: n04252077
+803: n04252225
+804: n04254120
+805: n04254680
+806: n04254777
+807: n04258138
+808: n04259630
+809: n04263257
+810: n04264628
+811: n04265275
+812: n04266014
+813: n04270147
+814: n04273569
+815: n04275363
+816: n05605498
+817: n04285008
+818: n04286575
+819: n08646566
+820: n04310018
+821: n04311004
+822: n04311174
+823: n04317175
+824: n04325704
+825: n04326547
+826: n04328186
+827: n04330267
+828: n04332243
+829: n04335435
+830: n04337157
+831: n04344873
+832: n04346328
+833: n04347754
+834: n04350905
+835: n04355338
+836: n04355933
+837: n04356056
+838: n04357314
+839: n04366367
+840: n04367480
+841: n04370456
+842: n04371430
+843: n14009946
+844: n04372370
+845: n04376876
+846: n04380533
+847: n04389033
+848: n04392985
+849: n04398044
+850: n04399382
+851: n04404412
+852: n04409515
+853: n04417672
+854: n04418357
+855: n04423845
+856: n04428191
+857: n04429376
+858: n04435653
+859: n04442312
+860: n04443257
+861: n04447861
+862: n04456115
+863: n04458633
+864: n04461696
+865: n04462240
+866: n04465666
+867: n04467665
+868: n04476259
+869: n04479046
+870: n04482393
+871: n04483307
+872: n04485082
+873: n04486054
+874: n04487081
+875: n04487394
+876: n04493381
+877: n04501370
+878: n04505470
+879: n04507155
+880: n04509417
+881: n04515003
+882: n04517823
+883: n04522168
+884: n04523525
+885: n04525038
+886: n04525305
+887: n04532106
+888: n04532670
+889: n04536866
+890: n04540053
+891: n04542943
+892: n04548280
+893: n04548362
+894: n04550184
+895: n04552348
+896: n04553703
+897: n04554684
+898: n04557648
+899: n04560804
+900: n04562935
+901: n04579145
+902: n04579667
+903: n04584207
+904: n04589890
+905: n04590129
+906: n04591157
+907: n04591713
+908: n10782135
+909: n04596742
+910: n04598010
+911: n04599235
+912: n04604644
+913: n14423870
+914: n04612504
+915: n04613696
+916: n06359193
+917: n06596364
+918: n06785654
+919: n06794110
+920: n06874185
+921: n07248320
+922: n07565083
+923: n07657664
+924: n07583066
+925: n07584110
+926: n07590611
+927: n07613480
+928: n07614500
+929: n07615774
+930: n07684084
+931: n07693725
+932: n07695742
+933: n07697313
+934: n07697537
+935: n07711569
+936: n07714571
+937: n07714990
+938: n07715103
+939: n12159804
+940: n12160303
+941: n12160857
+942: n07717556
+943: n07718472
+944: n07718747
+945: n07720875
+946: n07730033
+947: n13001041
+948: n07742313
+949: n12630144
+950: n14991210
+951: n07749582
+952: n07753113
+953: n07753275
+954: n07753592
+955: n07754684
+956: n07760859
+957: n07768694
+958: n07802026
+959: n07831146
+960: n07836838
+961: n07860988
+962: n07871810
+963: n07873807
+964: n07875152
+965: n07880968
+966: n07892512
+967: n07920052
+968: n13904665
+969: n07932039
+970: n09193705
+971: n09229709
+972: n09246464
+973: n09256479
+974: n09288635
+975: n09332890
+976: n09399592
+977: n09421951
+978: n09428293
+979: n09468604
+980: n09472597
+981: n09835506
+982: n10148035
+983: n10565667
+984: n11879895
+985: n11939491
+986: n12057211
+987: n12144580
+988: n12267677
+989: n12620546
+990: n12768682
+991: n12985857
+992: n12998815
+993: n13037406
+994: n13040303
+995: n13044778
+996: n13052670
+997: n13054560
+998: n13133613
+999: n15075141
diff --git a/gligen/ldm/data/lsun.py b/gligen/ldm/data/lsun.py
new file mode 100644
index 0000000000000000000000000000000000000000..6256e45715ff0b57c53f985594d27cbbbff0e68e
--- /dev/null
+++ b/gligen/ldm/data/lsun.py
@@ -0,0 +1,92 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+
+class LSUNBase(Dataset):
+ def __init__(self,
+ txt_file,
+ data_root,
+ size=None,
+ interpolation="bicubic",
+ flip_p=0.5
+ ):
+ self.data_paths = txt_file
+ self.data_root = data_root
+ with open(self.data_paths, "r") as f:
+ self.image_paths = f.read().splitlines()
+ self._length = len(self.image_paths)
+ self.labels = {
+ "relative_file_path_": [l for l in self.image_paths],
+ "file_path_": [os.path.join(self.data_root, l)
+ for l in self.image_paths],
+ }
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = dict((k, self.labels[k][i]) for k in self.labels)
+ image = Image.open(example["file_path_"])
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example
+
+
+class LSUNChurchesTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
+
+
+class LSUNChurchesValidation(LSUNBase):
+ def __init__(self, flip_p=0., **kwargs):
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
+ flip_p=flip_p, **kwargs)
+
+
+class LSUNBedroomsTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
+
+
+class LSUNBedroomsValidation(LSUNBase):
+ def __init__(self, flip_p=0.0, **kwargs):
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
+ flip_p=flip_p, **kwargs)
+
+
+class LSUNCatsTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
+
+
+class LSUNCatsValidation(LSUNBase):
+ def __init__(self, flip_p=0., **kwargs):
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
+ flip_p=flip_p, **kwargs)
diff --git a/gligen/ldm/lr_scheduler.py b/gligen/ldm/lr_scheduler.py
new file mode 100644
index 0000000000000000000000000000000000000000..be39da9ca6dacc22bf3df9c7389bbb403a4a3ade
--- /dev/null
+++ b/gligen/ldm/lr_scheduler.py
@@ -0,0 +1,98 @@
+import numpy as np
+
+
+class LambdaWarmUpCosineScheduler:
+ """
+ note: use with a base_lr of 1.0
+ """
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
+ self.lr_warm_up_steps = warm_up_steps
+ self.lr_start = lr_start
+ self.lr_min = lr_min
+ self.lr_max = lr_max
+ self.lr_max_decay_steps = max_decay_steps
+ self.last_lr = 0.
+ self.verbosity_interval = verbosity_interval
+
+ def schedule(self, n, **kwargs):
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
+ if n < self.lr_warm_up_steps:
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
+ self.last_lr = lr
+ return lr
+ else:
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
+ t = min(t, 1.0)
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
+ 1 + np.cos(t * np.pi))
+ self.last_lr = lr
+ return lr
+
+ def __call__(self, n, **kwargs):
+ return self.schedule(n,**kwargs)
+
+
+class LambdaWarmUpCosineScheduler2:
+ """
+ supports repeated iterations, configurable via lists
+ note: use with a base_lr of 1.0.
+ """
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
+ self.lr_warm_up_steps = warm_up_steps
+ self.f_start = f_start
+ self.f_min = f_min
+ self.f_max = f_max
+ self.cycle_lengths = cycle_lengths
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
+ self.last_f = 0.
+ self.verbosity_interval = verbosity_interval
+
+ def find_in_interval(self, n):
+ interval = 0
+ for cl in self.cum_cycles[1:]:
+ if n <= cl:
+ return interval
+ interval += 1
+
+ def schedule(self, n, **kwargs):
+ cycle = self.find_in_interval(n)
+ n = n - self.cum_cycles[cycle]
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+ f"current cycle {cycle}")
+ if n < self.lr_warm_up_steps[cycle]:
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+ self.last_f = f
+ return f
+ else:
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
+ t = min(t, 1.0)
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
+ 1 + np.cos(t * np.pi))
+ self.last_f = f
+ return f
+
+ def __call__(self, n, **kwargs):
+ return self.schedule(n, **kwargs)
+
+
+class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
+
+ def schedule(self, n, **kwargs):
+ cycle = self.find_in_interval(n)
+ n = n - self.cum_cycles[cycle]
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+ f"current cycle {cycle}")
+
+ if n < self.lr_warm_up_steps[cycle]:
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+ self.last_f = f
+ return f
+ else:
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
+ self.last_f = f
+ return f
+
diff --git a/gligen/ldm/models/autoencoder.py b/gligen/ldm/models/autoencoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..1163e72dd063ee6773fe3e3c586c43b0663da4c9
--- /dev/null
+++ b/gligen/ldm/models/autoencoder.py
@@ -0,0 +1,52 @@
+import torch
+import torch.nn as nn
+#import pytorch_lightning as pl
+import torch.nn.functional as F
+from contextlib import contextmanager
+
+# from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
+
+from ldm.modules.diffusionmodules.model import Encoder, Decoder
+from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+
+from ldm.util import instantiate_from_config
+
+
+
+
+class AutoencoderKL(nn.Module):
+ def __init__(self,
+ ddconfig,
+ embed_dim,
+ scale_factor=1
+ ):
+ super().__init__()
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ assert ddconfig["double_z"]
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ self.embed_dim = embed_dim
+ self.scale_factor = scale_factor
+
+
+
+ def encode(self, x):
+ h = self.encoder(x)
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+ return posterior.sample() * self.scale_factor
+
+ def decode(self, z):
+ z = 1. / self.scale_factor * z
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+ return dec
+
+
+
+
+
+
+
+
diff --git a/gligen/ldm/models/diffusion/__init__.py b/gligen/ldm/models/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/gligen/ldm/models/diffusion/classifier.py b/gligen/ldm/models/diffusion/classifier.py
new file mode 100644
index 0000000000000000000000000000000000000000..67e98b9d8ffb96a150b517497ace0a242d7163ef
--- /dev/null
+++ b/gligen/ldm/models/diffusion/classifier.py
@@ -0,0 +1,267 @@
+import os
+import torch
+import pytorch_lightning as pl
+from omegaconf import OmegaConf
+from torch.nn import functional as F
+from torch.optim import AdamW
+from torch.optim.lr_scheduler import LambdaLR
+from copy import deepcopy
+from einops import rearrange
+from glob import glob
+from natsort import natsorted
+
+from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
+from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
+
+__models__ = {
+ 'class_label': EncoderUNetModel,
+ 'segmentation': UNetModel
+}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+class NoisyLatentImageClassifier(pl.LightningModule):
+
+ def __init__(self,
+ diffusion_path,
+ num_classes,
+ ckpt_path=None,
+ pool='attention',
+ label_key=None,
+ diffusion_ckpt_path=None,
+ scheduler_config=None,
+ weight_decay=1.e-2,
+ log_steps=10,
+ monitor='val/loss',
+ *args,
+ **kwargs):
+ super().__init__(*args, **kwargs)
+ self.num_classes = num_classes
+ # get latest config of diffusion model
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
+ self.load_diffusion()
+
+ self.monitor = monitor
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
+ self.log_steps = log_steps
+
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
+ else self.diffusion_model.cond_stage_key
+
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
+
+ if self.label_key not in __models__:
+ raise NotImplementedError()
+
+ self.load_classifier(ckpt_path, pool)
+
+ self.scheduler_config = scheduler_config
+ self.use_scheduler = self.scheduler_config is not None
+ self.weight_decay = weight_decay
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def load_diffusion(self):
+ model = instantiate_from_config(self.diffusion_config)
+ self.diffusion_model = model.eval()
+ self.diffusion_model.train = disabled_train
+ for param in self.diffusion_model.parameters():
+ param.requires_grad = False
+
+ def load_classifier(self, ckpt_path, pool):
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
+ model_config.out_channels = self.num_classes
+ if self.label_key == 'class_label':
+ model_config.pool = pool
+
+ self.model = __models__[self.label_key](**model_config)
+ if ckpt_path is not None:
+ print('#####################################################################')
+ print(f'load from ckpt "{ckpt_path}"')
+ print('#####################################################################')
+ self.init_from_ckpt(ckpt_path)
+
+ @torch.no_grad()
+ def get_x_noisy(self, x, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x))
+ continuous_sqrt_alpha_cumprod = None
+ if self.diffusion_model.use_continuous_noise:
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
+ # todo: make sure t+1 is correct here
+
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
+
+ def forward(self, x_noisy, t, *args, **kwargs):
+ return self.model(x_noisy, t)
+
+ @torch.no_grad()
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ @torch.no_grad()
+ def get_conditioning(self, batch, k=None):
+ if k is None:
+ k = self.label_key
+ assert k is not None, 'Needs to provide label key'
+
+ targets = batch[k].to(self.device)
+
+ if self.label_key == 'segmentation':
+ targets = rearrange(targets, 'b h w c -> b c h w')
+ for down in range(self.numd):
+ h, w = targets.shape[-2:]
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
+
+ # targets = rearrange(targets,'b c h w -> b h w c')
+
+ return targets
+
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
+ _, top_ks = torch.topk(logits, k, dim=1)
+ if reduction == "mean":
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
+ elif reduction == "none":
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
+
+ def on_train_epoch_start(self):
+ # save some memory
+ self.diffusion_model.model.to('cpu')
+
+ @torch.no_grad()
+ def write_logs(self, loss, logits, targets):
+ log_prefix = 'train' if self.training else 'val'
+ log = {}
+ log[f"{log_prefix}/loss"] = loss.mean()
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
+ logits, targets, k=1, reduction="mean"
+ )
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
+ logits, targets, k=5, reduction="mean"
+ )
+
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
+
+ def shared_step(self, batch, t=None):
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
+ targets = self.get_conditioning(batch)
+ if targets.dim() == 4:
+ targets = targets.argmax(dim=1)
+ if t is None:
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
+ else:
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
+ x_noisy = self.get_x_noisy(x, t)
+ logits = self(x_noisy, t)
+
+ loss = F.cross_entropy(logits, targets, reduction='none')
+
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
+
+ loss = loss.mean()
+ return loss, logits, x_noisy, targets
+
+ def training_step(self, batch, batch_idx):
+ loss, *_ = self.shared_step(batch)
+ return loss
+
+ def reset_noise_accs(self):
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
+
+ def on_validation_start(self):
+ self.reset_noise_accs()
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ loss, *_ = self.shared_step(batch)
+
+ for t in self.noisy_acc:
+ _, logits, _, targets = self.shared_step(batch, t)
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
+
+ return loss
+
+ def configure_optimizers(self):
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
+
+ if self.use_scheduler:
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [optimizer], scheduler
+
+ return optimizer
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, *args, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
+ log['inputs'] = x
+
+ y = self.get_conditioning(batch)
+
+ if self.label_key == 'class_label':
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+ log['labels'] = y
+
+ if ismap(y):
+ log['labels'] = self.diffusion_model.to_rgb(y)
+
+ for step in range(self.log_steps):
+ current_time = step * self.log_time_interval
+
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
+
+ log[f'inputs@t{current_time}'] = x_noisy
+
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
+ pred = rearrange(pred, 'b h w c -> b c h w')
+
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
+
+ for key in log:
+ log[key] = log[key][:N]
+
+ return log
diff --git a/gligen/ldm/models/diffusion/ddim.py b/gligen/ldm/models/diffusion/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..ef5603ae921ee3ad88a1b5914201c1385bee3a2a
--- /dev/null
+++ b/gligen/ldm/models/diffusion/ddim.py
@@ -0,0 +1,134 @@
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+
+
+class DDIMSampler(object):
+ def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
+ super().__init__()
+ self.diffusion = diffusion
+ self.model = model
+ self.device = diffusion.betas.device
+ self.ddpm_num_timesteps = diffusion.num_timesteps
+ self.schedule = schedule
+ self.alpha_generator_func = alpha_generator_func
+ self.set_alpha_scale = set_alpha_scale
+
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ attr = attr.to(self.device)
+ setattr(self, name, attr)
+
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.):
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=False)
+ alphas_cumprod = self.diffusion.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
+
+ self.register_buffer('betas', to_torch(self.diffusion.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=False)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+
+ @torch.no_grad()
+ def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
+ self.make_schedule(ddim_num_steps=S)
+ return self.ddim_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0)
+
+
+ @torch.no_grad()
+ def ddim_sampling(self, shape, input, uc, guidance_scale=1, mask=None, x0=None):
+ b = shape[0]
+
+ img = input["x"]
+ if img == None:
+ img = torch.randn(shape, device=self.device)
+ input["x"] = img
+
+
+ time_range = np.flip(self.ddim_timesteps)
+ total_steps = self.ddim_timesteps.shape[0]
+
+ #iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+ iterator = time_range
+
+ if self.alpha_generator_func != None:
+ alphas = self.alpha_generator_func(len(iterator))
+
+
+ for i, step in enumerate(iterator):
+
+ # set alpha
+ if self.alpha_generator_func != None:
+ self.set_alpha_scale(self.model, alphas[i])
+
+ # run
+ index = total_steps - i - 1
+ input["timesteps"] = torch.full((b,), step, device=self.device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.diffusion.q_sample( x0, input["timesteps"] )
+ img = img_orig * mask + (1. - mask) * img
+ input["x"] = img
+
+ img, pred_x0 = self.p_sample_ddim(input, index=index, uc=uc, guidance_scale=guidance_scale)
+ input["x"] = img
+
+ return img
+
+
+ @torch.no_grad()
+ def p_sample_ddim(self, input, index, uc=None, guidance_scale=1):
+
+
+ e_t = self.model(input)
+ if uc is not None and guidance_scale != 1:
+ unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc)
+ if "inpainting_extra_input" in input:
+ unconditional_input["inpainting_extra_input"] = input["inpainting_extra_input"]
+ e_t_uncond = self.model( unconditional_input )
+ e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
+
+ # select parameters corresponding to the currently considered timestep
+ b = input["x"].shape[0]
+ a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
+ a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
+ sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
+
+ # current prediction for x_0
+ pred_x0 = (input["x"] - sqrt_one_minus_at * e_t) / a_t.sqrt()
+
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * torch.randn_like( input["x"] )
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+
+ return x_prev, pred_x0
diff --git a/gligen/ldm/models/diffusion/ddpm.py b/gligen/ldm/models/diffusion/ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..8e3feeabf55dbc0cf6fd112195bcebd7fddbec41
--- /dev/null
+++ b/gligen/ldm/models/diffusion/ddpm.py
@@ -0,0 +1,72 @@
+import torch
+import torch.nn as nn
+import numpy as np
+from functools import partial
+from ldm.modules.diffusionmodules.util import make_beta_schedule
+
+
+
+
+
+class DDPM(nn.Module):
+ def __init__(self, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().__init__()
+
+ self.v_posterior = 0
+ self.register_schedule(beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+
+ def register_schedule(self, beta_schedule="linear", timesteps=1000, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch( betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch( (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/gligen/ldm/models/diffusion/ldm.py b/gligen/ldm/models/diffusion/ldm.py
new file mode 100644
index 0000000000000000000000000000000000000000..78fa65862d848a3fa49ff8c2b7bc475067175891
--- /dev/null
+++ b/gligen/ldm/models/diffusion/ldm.py
@@ -0,0 +1,88 @@
+import torch
+import torch.nn as nn
+import numpy as np
+from tqdm import tqdm
+from ldm.util import default
+from ldm.modules.diffusionmodules.util import extract_into_tensor
+from .ddpm import DDPM
+
+
+
+class LatentDiffusion(DDPM):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ # hardcoded
+ self.clip_denoised = False
+
+
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+
+ "Does not support DDPM sampling anymore. Only do DDIM or PLMS"
+
+ # = = = = = = = = = = = = Below is for sampling = = = = = = = = = = = = #
+
+ # def predict_start_from_noise(self, x_t, t, noise):
+ # return ( extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ # extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise )
+
+ # def q_posterior(self, x_start, x_t, t):
+ # posterior_mean = (
+ # extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ # extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ # )
+ # posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ # posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ # return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+
+ # def p_mean_variance(self, model, x, c, t):
+
+ # model_out = model(x, t, c)
+ # x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+
+ # if self.clip_denoised:
+ # x_recon.clamp_(-1., 1.)
+
+ # model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ # return model_mean, posterior_variance, posterior_log_variance, x_recon
+
+
+ # @torch.no_grad()
+ # def p_sample(self, model, x, c, t):
+ # b, *_, device = *x.shape, x.device
+ # model_mean, _, model_log_variance, x0 = self.p_mean_variance(model, x=x, c=c, t=t, )
+ # noise = torch.randn_like(x)
+
+ # # no noise when t == 0
+ # nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ # return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+
+
+ # @torch.no_grad()
+ # def p_sample_loop(self, model, shape, c):
+ # device = self.betas.device
+ # b = shape[0]
+ # img = torch.randn(shape, device=device)
+
+ # iterator = tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps)
+ # for i in iterator:
+ # ts = torch.full((b,), i, device=device, dtype=torch.long)
+ # img, x0 = self.p_sample(model, img, c, ts)
+
+ # return img
+
+
+ # @torch.no_grad()
+ # def sample(self, model, shape, c, uc=None, guidance_scale=None):
+ # return self.p_sample_loop(model, shape, c)
+
+
+
+
+
diff --git a/gligen/ldm/models/diffusion/plms.py b/gligen/ldm/models/diffusion/plms.py
new file mode 100644
index 0000000000000000000000000000000000000000..2c779fc90f78fe98157c862e54d36fd5e3d32395
--- /dev/null
+++ b/gligen/ldm/models/diffusion/plms.py
@@ -0,0 +1,162 @@
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+from copy import deepcopy
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+
+
+class PLMSSampler(object):
+ def __init__(self, diffusion, model, schedule="linear", alpha_generator_func=None, set_alpha_scale=None):
+ super().__init__()
+ self.diffusion = diffusion
+ self.model = model
+ self.device = diffusion.betas.device
+ self.ddpm_num_timesteps = diffusion.num_timesteps
+ self.schedule = schedule
+ self.alpha_generator_func = alpha_generator_func
+ self.set_alpha_scale = set_alpha_scale
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ attr = attr.to(self.device)
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
+ if ddim_eta != 0:
+ raise ValueError('ddim_eta must be 0 for PLMS')
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.diffusion.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.device)
+
+ self.register_buffer('betas', to_torch(self.diffusion.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.diffusion.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+
+ @torch.no_grad()
+ def sample(self, S, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
+ self.make_schedule(ddim_num_steps=S)
+ return self.plms_sampling(shape, input, uc, guidance_scale, mask=mask, x0=x0)
+
+
+ @torch.no_grad()
+ def plms_sampling(self, shape, input, uc=None, guidance_scale=1, mask=None, x0=None):
+
+ b = shape[0]
+
+ img = input["x"]
+ if img == None:
+ img = torch.randn(shape, device=self.device)
+ input["x"] = img
+
+ time_range = np.flip(self.ddim_timesteps)
+ total_steps = self.ddim_timesteps.shape[0]
+
+ old_eps = []
+
+ if self.alpha_generator_func != None:
+ alphas = self.alpha_generator_func(len(time_range))
+
+ for i, step in enumerate(time_range):
+
+ # set alpha
+ if self.alpha_generator_func != None:
+ self.set_alpha_scale(self.model, alphas[i])
+
+ # run
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=self.device, dtype=torch.long)
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=self.device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.diffusion.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+ input["x"] = img
+
+ img, pred_x0, e_t = self.p_sample_plms(input, ts, index=index, uc=uc, guidance_scale=guidance_scale, old_eps=old_eps, t_next=ts_next)
+ input["x"] = img
+ old_eps.append(e_t)
+ if len(old_eps) >= 4:
+ old_eps.pop(0)
+
+ return img
+
+
+ @torch.no_grad()
+ def p_sample_plms(self, input, t, index, guidance_scale=1., uc=None, old_eps=None, t_next=None):
+ x = deepcopy(input["x"])
+ b = x.shape[0]
+
+ def get_model_output(input):
+ e_t = self.model(input)
+ if uc is not None and guidance_scale != 1:
+ unconditional_input = dict(x=input["x"], timesteps=input["timesteps"], context=uc)
+ if "inpainting_extra_input" in input:
+ unconditional_input["inpainting_extra_input"] = input["inpainting_extra_input"]
+ e_t_uncond = self.model( unconditional_input )
+ e_t = e_t_uncond + guidance_scale * (e_t - e_t_uncond)
+ return e_t
+
+
+ def get_x_prev_and_pred_x0(e_t, index):
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), self.ddim_alphas[index], device=self.device)
+ a_prev = torch.full((b, 1, 1, 1), self.ddim_alphas_prev[index], device=self.device)
+ sigma_t = torch.full((b, 1, 1, 1), self.ddim_sigmas[index], device=self.device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), self.ddim_sqrt_one_minus_alphas[index],device=self.device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * torch.randn_like(x)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ input["timesteps"] = t
+ e_t = get_model_output(input)
+ if len(old_eps) == 0:
+ # Pseudo Improved Euler (2nd order)
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
+ input["x"] = x_prev
+ input["timesteps"] = t_next
+ e_t_next = get_model_output(input)
+ e_t_prime = (e_t + e_t_next) / 2
+ elif len(old_eps) == 1:
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
+ elif len(old_eps) == 2:
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
+ elif len(old_eps) >= 3:
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
+
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
+
+ return x_prev, pred_x0, e_t
diff --git a/gligen/ldm/modules/attention.py b/gligen/ldm/modules/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..c443da348bc1ce707487fb8962a13b1810a43454
--- /dev/null
+++ b/gligen/ldm/modules/attention.py
@@ -0,0 +1,387 @@
+from inspect import isfunction
+import math
+import torch
+import torch.nn.functional as F
+from torch import nn, einsum
+from einops import rearrange, repeat
+
+# from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
+from torch.utils import checkpoint
+
+try:
+ import xformers
+ import xformers.ops
+ XFORMERS_IS_AVAILBLE = True
+except:
+ XFORMERS_IS_AVAILBLE = False
+
+
+def exists(val):
+ return val is not None
+
+
+def uniq(arr):
+ return{el: True for el in arr}.keys()
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def max_neg_value(t):
+ return -torch.finfo(t.dtype).max
+
+
+def init_(tensor):
+ dim = tensor.shape[-1]
+ std = 1 / math.sqrt(dim)
+ tensor.uniform_(-std, std)
+ return tensor
+
+
+# feedforward
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def Normalize(in_channels):
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class LinearAttention(nn.Module):
+ def __init__(self, dim, heads=4, dim_head=32):
+ super().__init__()
+ self.heads = heads
+ hidden_dim = dim_head * heads
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
+
+ def forward(self, x):
+ b, c, h, w = x.shape
+ qkv = self.to_qkv(x)
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
+ k = k.softmax(dim=-1)
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
+ return self.to_out(out)
+
+
+
+
+class CrossAttention(nn.Module):
+ def __init__(self, query_dim, key_dim, value_dim, heads=8, dim_head=64, dropout=0):
+ super().__init__()
+ inner_dim = dim_head * heads
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.dim_head = dim_head
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(key_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(value_dim, inner_dim, bias=False)
+
+
+ self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) )
+
+
+ def fill_inf_from_mask(self, sim, mask):
+ if mask is not None:
+ B,M = mask.shape
+ mask = mask.unsqueeze(1).repeat(1,self.heads,1).reshape(B*self.heads,1,-1)
+ max_neg_value = -torch.finfo(sim.dtype).max
+ sim.masked_fill_(~mask, max_neg_value)
+ return sim
+
+ def forward_plain(self, x, key, value, mask=None):
+
+ q = self.to_q(x) # B*N*(H*C)
+ k = self.to_k(key) # B*M*(H*C)
+ v = self.to_v(value) # B*M*(H*C)
+
+ B, N, HC = q.shape
+ _, M, _ = key.shape
+ H = self.heads
+ C = HC // H
+
+ q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
+ k = k.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C
+ v = v.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C
+
+ sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale # (B*H)*N*M
+ self.fill_inf_from_mask(sim, mask)
+ attn = sim.softmax(dim=-1) # (B*H)*N*M
+
+ out = torch.einsum('b i j, b j d -> b i d', attn, v) # (B*H)*N*C
+ out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C)
+
+ return self.to_out(out)
+
+ def forward(self, x, key, value, mask=None):
+ if not XFORMERS_IS_AVAILBLE:
+ return self.forward_plain(x, key, value, mask)
+
+ q = self.to_q(x) # B*N*(H*C)
+ k = self.to_k(key) # B*M*(H*C)
+ v = self.to_v(value) # B*M*(H*C)
+
+ b, _, _ = q.shape
+ q, k, v = map(
+ lambda t: t.unsqueeze(3)
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
+ .contiguous(),
+ (q, k, v),
+ )
+
+ # actually compute the attention, what we cannot get enough of
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
+
+ if exists(mask):
+ raise NotImplementedError
+ out = (
+ out.unsqueeze(0)
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
+ )
+ return self.to_out(out)
+
+
+
+
+
+class SelfAttention(nn.Module):
+ def __init__(self, query_dim, heads=8, dim_head=64, dropout=0.):
+ super().__init__()
+ inner_dim = dim_head * heads
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.dim_head = dim_head
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(query_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) )
+
+ def forward_plain(self, x):
+ q = self.to_q(x) # B*N*(H*C)
+ k = self.to_k(x) # B*N*(H*C)
+ v = self.to_v(x) # B*N*(H*C)
+
+ B, N, HC = q.shape
+ H = self.heads
+ C = HC // H
+
+ q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
+ k = k.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
+ v = v.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
+
+ sim = torch.einsum('b i c, b j c -> b i j', q, k) * self.scale # (B*H)*N*N
+ attn = sim.softmax(dim=-1) # (B*H)*N*N
+
+ out = torch.einsum('b i j, b j c -> b i c', attn, v) # (B*H)*N*C
+ out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C)
+
+ return self.to_out(out)
+
+ def forward(self, x, context=None, mask=None):
+ if not XFORMERS_IS_AVAILBLE:
+ return self.forward_plain(x)
+
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ b, _, _ = q.shape
+ q, k, v = map(
+ lambda t: t.unsqueeze(3)
+ .reshape(b, t.shape[1], self.heads, self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b * self.heads, t.shape[1], self.dim_head)
+ .contiguous(),
+ (q, k, v),
+ )
+
+ # actually compute the attention, what we cannot get enough of
+ out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
+
+ if exists(mask):
+ raise NotImplementedError
+ out = (
+ out.unsqueeze(0)
+ .reshape(b, self.heads, out.shape[1], self.dim_head)
+ .permute(0, 2, 1, 3)
+ .reshape(b, out.shape[1], self.heads * self.dim_head)
+ )
+ return self.to_out(out)
+
+
+class GatedCrossAttentionDense(nn.Module):
+ def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head):
+ super().__init__()
+
+ self.attn = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head)
+ self.ff = FeedForward(query_dim, glu=True)
+
+ self.norm1 = nn.LayerNorm(query_dim)
+ self.norm2 = nn.LayerNorm(query_dim)
+
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
+
+ # this can be useful: we can externally change magnitude of tanh(alpha)
+ # for example, when it is set to 0, then the entire model is same as original one
+ self.scale = 1
+
+ def forward(self, x, objs):
+
+ x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(x), objs, objs)
+ x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
+
+ return x
+
+
+class GatedSelfAttentionDense(nn.Module):
+ def __init__(self, query_dim, context_dim, n_heads, d_head):
+ super().__init__()
+
+ # we need a linear projection since we need cat visual feature and obj feature
+ self.linear = nn.Linear(context_dim, query_dim)
+
+ self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
+ self.ff = FeedForward(query_dim, glu=True)
+
+ self.norm1 = nn.LayerNorm(query_dim)
+ self.norm2 = nn.LayerNorm(query_dim)
+
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
+
+ # this can be useful: we can externally change magnitude of tanh(alpha)
+ # for example, when it is set to 0, then the entire model is same as original one
+ self.scale = 1
+
+
+ def forward(self, x, objs):
+
+ N_visual = x.shape[1]
+ objs = self.linear(objs)
+
+ x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(torch.cat([x,objs],dim=1)) )[:,0:N_visual,:]
+ x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
+
+ return x
+
+
+class BasicTransformerBlock(nn.Module):
+ def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=True):
+ super().__init__()
+ self.attn1 = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
+ self.ff = FeedForward(query_dim, glu=True)
+ self.attn2 = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head)
+ self.norm1 = nn.LayerNorm(query_dim)
+ self.norm2 = nn.LayerNorm(query_dim)
+ self.norm3 = nn.LayerNorm(query_dim)
+ self.use_checkpoint = use_checkpoint
+
+ if fuser_type == "gatedSA":
+ # note key_dim here actually is context_dim
+ self.fuser = GatedSelfAttentionDense(query_dim, key_dim, n_heads, d_head)
+ elif fuser_type == "gatedCA":
+ self.fuser = GatedCrossAttentionDense(query_dim, key_dim, value_dim, n_heads, d_head)
+ else:
+ assert False
+
+
+ def forward(self, x, context, objs):
+# return checkpoint(self._forward, (x, context, objs), self.parameters(), self.use_checkpoint)
+ if self.use_checkpoint and x.requires_grad:
+ return checkpoint.checkpoint(self._forward, x, context, objs)
+ else:
+ return self._forward(x, context, objs)
+
+ def _forward(self, x, context, objs):
+ x = self.attn1( self.norm1(x) ) + x
+ x = self.fuser(x, objs) # identity mapping in the beginning
+ x = self.attn2(self.norm2(x), context, context) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
+
+
+class SpatialTransformer(nn.Module):
+ def __init__(self, in_channels, key_dim, value_dim, n_heads, d_head, depth=1, fuser_type=None, use_checkpoint=True):
+ super().__init__()
+ self.in_channels = in_channels
+ query_dim = n_heads * d_head
+ self.norm = Normalize(in_channels)
+
+
+ self.proj_in = nn.Conv2d(in_channels,
+ query_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ self.transformer_blocks = nn.ModuleList(
+ [BasicTransformerBlock(query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=use_checkpoint)
+ for d in range(depth)]
+ )
+
+ self.proj_out = zero_module(nn.Conv2d(query_dim,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0))
+
+ def forward(self, x, context, objs):
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ x = self.proj_in(x)
+ x = rearrange(x, 'b c h w -> b (h w) c')
+ for block in self.transformer_blocks:
+ x = block(x, context, objs)
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
+ x = self.proj_out(x)
+ return x + x_in
\ No newline at end of file
diff --git a/gligen/ldm/modules/diffusionmodules/__init__.py b/gligen/ldm/modules/diffusionmodules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/gligen/ldm/modules/diffusionmodules/model.py b/gligen/ldm/modules/diffusionmodules/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..533e589a2024f1d7c52093d8c472c3b1b6617e26
--- /dev/null
+++ b/gligen/ldm/modules/diffusionmodules/model.py
@@ -0,0 +1,835 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import rearrange
+
+from ldm.util import instantiate_from_config
+from ldm.modules.attention import LinearAttention
+
+
+def get_timestep_embedding(timesteps, embedding_dim):
+ """
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
+ From Fairseq.
+ Build sinusoidal embeddings.
+ This matches the implementation in tensor2tensor, but differs slightly
+ from the description in Section 3.5 of "Attention Is All You Need".
+ """
+ assert len(timesteps.shape) == 1
+
+ half_dim = embedding_dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+ emb = emb.to(device=timesteps.device)
+ emb = timesteps.float()[:, None] * emb[None, :]
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+ if embedding_dim % 2 == 1: # zero pad
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
+ return emb
+
+
+def nonlinearity(x):
+ # swish
+ return x*torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class Upsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ if self.with_conv:
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+ if self.with_conv:
+ x = self.conv(x)
+ return x
+
+
+class Downsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ if self.with_conv:
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=2,
+ padding=0)
+
+ def forward(self, x):
+ if self.with_conv:
+ pad = (0,1,0,1)
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+ x = self.conv(x)
+ else:
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
+ return x
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
+ dropout, temb_channels=512):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+
+ self.norm1 = Normalize(in_channels)
+ self.conv1 = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if temb_channels > 0:
+ self.temb_proj = torch.nn.Linear(temb_channels,
+ out_channels)
+ self.norm2 = Normalize(out_channels)
+ self.dropout = torch.nn.Dropout(dropout)
+ self.conv2 = torch.nn.Conv2d(out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ else:
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x, temb):
+ h = x
+ h = self.norm1(h)
+ h = nonlinearity(h)
+ h = self.conv1(h)
+
+ if temb is not None:
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
+
+ h = self.norm2(h)
+ h = nonlinearity(h)
+ h = self.dropout(h)
+ h = self.conv2(h)
+
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ x = self.conv_shortcut(x)
+ else:
+ x = self.nin_shortcut(x)
+
+ return x+h
+
+
+class LinAttnBlock(LinearAttention):
+ """to match AttnBlock usage"""
+ def __init__(self, in_channels):
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
+
+
+class AttnBlock(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = q.reshape(b,c,h*w)
+ q = q.permute(0,2,1) # b,hw,c
+ k = k.reshape(b,c,h*w) # b,c,hw
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = v.reshape(b,c,h*w)
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+ h_ = h_.reshape(b,c,h,w)
+
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+
+def make_attn(in_channels, attn_type="vanilla"):
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
+ if attn_type == "vanilla":
+ return AttnBlock(in_channels)
+ elif attn_type == "none":
+ return nn.Identity(in_channels)
+ else:
+ return LinAttnBlock(in_channels)
+
+
+class Model(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = self.ch*4
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ self.use_timestep = use_timestep
+ if self.use_timestep:
+ # timestep embedding
+ self.temb = nn.Module()
+ self.temb.dense = nn.ModuleList([
+ torch.nn.Linear(self.ch,
+ self.temb_ch),
+ torch.nn.Linear(self.temb_ch,
+ self.temb_ch),
+ ])
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ skip_in = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ if i_block == self.num_res_blocks:
+ skip_in = ch*in_ch_mult[i_level]
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x, t=None, context=None):
+ #assert x.shape[2] == x.shape[3] == self.resolution
+ if context is not None:
+ # assume aligned context, cat along channel axis
+ x = torch.cat((x, context), dim=1)
+ if self.use_timestep:
+ # timestep embedding
+ assert t is not None
+ temb = get_timestep_embedding(t, self.ch)
+ temb = self.temb.dense[0](temb)
+ temb = nonlinearity(temb)
+ temb = self.temb.dense[1](temb)
+ else:
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](
+ torch.cat([h, hs.pop()], dim=1), temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+ def get_last_layer(self):
+ return self.conv_out.weight
+
+
+class Encoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
+ **ignore_kwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.in_ch_mult = in_ch_mult
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ 2*z_channels if double_z else z_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # timestep embedding
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class Decoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
+ attn_type="vanilla", **ignorekwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+ self.give_pre_end = give_pre_end
+ self.tanh_out = tanh_out
+
+ # compute in_ch_mult, block_in and curr_res at lowest res
+ in_ch_mult = (1,)+tuple(ch_mult)
+ block_in = ch*ch_mult[self.num_resolutions-1]
+ curr_res = resolution // 2**(self.num_resolutions-1)
+ self.z_shape = (1,z_channels,curr_res,curr_res)
+ print("Working with z of shape {} = {} dimensions.".format(
+ self.z_shape, np.prod(self.z_shape)))
+
+ # z to block_in
+ self.conv_in = torch.nn.Conv2d(z_channels,
+ block_in,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, z):
+ #assert z.shape[1:] == self.z_shape[1:]
+ self.last_z_shape = z.shape
+
+ # timestep embedding
+ temb = None
+
+ # z to block_in
+ h = self.conv_in(z)
+
+ # middle
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](h, temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ if self.give_pre_end:
+ return h
+
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ if self.tanh_out:
+ h = torch.tanh(h)
+ return h
+
+
+class SimpleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
+ super().__init__()
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
+ ResnetBlock(in_channels=in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=2 * in_channels,
+ out_channels=4 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=4 * in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ nn.Conv2d(2*in_channels, in_channels, 1),
+ Upsample(in_channels, with_conv=True)])
+ # end
+ self.norm_out = Normalize(in_channels)
+ self.conv_out = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ for i, layer in enumerate(self.model):
+ if i in [1,2,3]:
+ x = layer(x, None)
+ else:
+ x = layer(x)
+
+ h = self.norm_out(x)
+ h = nonlinearity(h)
+ x = self.conv_out(h)
+ return x
+
+
+class UpsampleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
+ ch_mult=(2,2), dropout=0.0):
+ super().__init__()
+ # upsampling
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ block_in = in_channels
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
+ self.res_blocks = nn.ModuleList()
+ self.upsample_blocks = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ res_block = []
+ block_out = ch * ch_mult[i_level]
+ for i_block in range(self.num_res_blocks + 1):
+ res_block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ self.res_blocks.append(nn.ModuleList(res_block))
+ if i_level != self.num_resolutions - 1:
+ self.upsample_blocks.append(Upsample(block_in, True))
+ curr_res = curr_res * 2
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # upsampling
+ h = x
+ for k, i_level in enumerate(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks + 1):
+ h = self.res_blocks[i_level][i_block](h, None)
+ if i_level != self.num_resolutions - 1:
+ h = self.upsample_blocks[k](h)
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class LatentRescaler(nn.Module):
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+ super().__init__()
+ # residual block, interpolate, residual block
+ self.factor = factor
+ self.conv_in = nn.Conv2d(in_channels,
+ mid_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+ self.attn = AttnBlock(mid_channels)
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+
+ self.conv_out = nn.Conv2d(mid_channels,
+ out_channels,
+ kernel_size=1,
+ )
+
+ def forward(self, x):
+ x = self.conv_in(x)
+ for block in self.res_block1:
+ x = block(x, None)
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
+ x = self.attn(x)
+ for block in self.res_block2:
+ x = block(x, None)
+ x = self.conv_out(x)
+ return x
+
+
+class MergedRescaleEncoder(nn.Module):
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ intermediate_chn = ch * ch_mult[-1]
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
+ out_ch=None)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.encoder(x)
+ x = self.rescaler(x)
+ return x
+
+
+class MergedRescaleDecoder(nn.Module):
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ tmp_chn = z_channels*ch_mult[-1]
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
+ out_channels=tmp_chn, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Upsampler(nn.Module):
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+ super().__init__()
+ assert out_size >= in_size
+ num_blocks = int(np.log2(out_size//in_size))+1
+ factor_up = 1.+ (out_size % in_size)
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
+ out_channels=in_channels)
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
+ attn_resolutions=[], in_channels=None, ch=in_channels,
+ ch_mult=[ch_mult for _ in range(num_blocks)])
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Resize(nn.Module):
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+ super().__init__()
+ self.with_conv = learned
+ self.mode = mode
+ if self.with_conv:
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
+ raise NotImplementedError()
+ assert in_channels is not None
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=4,
+ stride=2,
+ padding=1)
+
+ def forward(self, x, scale_factor=1.0):
+ if scale_factor==1.0:
+ return x
+ else:
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
+ return x
+
+class FirstStagePostProcessor(nn.Module):
+
+ def __init__(self, ch_mult:list, in_channels,
+ pretrained_model:nn.Module=None,
+ reshape=False,
+ n_channels=None,
+ dropout=0.,
+ pretrained_config=None):
+ super().__init__()
+ if pretrained_config is None:
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+ self.pretrained_model = pretrained_model
+ else:
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+ self.instantiate_pretrained(pretrained_config)
+
+ self.do_reshape = reshape
+
+ if n_channels is None:
+ n_channels = self.pretrained_model.encoder.ch
+
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
+ stride=1,padding=1)
+
+ blocks = []
+ downs = []
+ ch_in = n_channels
+ for m in ch_mult:
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
+ ch_in = m * n_channels
+ downs.append(Downsample(ch_in, with_conv=False))
+
+ self.model = nn.ModuleList(blocks)
+ self.downsampler = nn.ModuleList(downs)
+
+
+ def instantiate_pretrained(self, config):
+ model = instantiate_from_config(config)
+ self.pretrained_model = model.eval()
+ # self.pretrained_model.train = False
+ for param in self.pretrained_model.parameters():
+ param.requires_grad = False
+
+
+ @torch.no_grad()
+ def encode_with_pretrained(self,x):
+ c = self.pretrained_model.encode(x)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ return c
+
+ def forward(self,x):
+ z_fs = self.encode_with_pretrained(x)
+ z = self.proj_norm(z_fs)
+ z = self.proj(z)
+ z = nonlinearity(z)
+
+ for submodel, downmodel in zip(self.model,self.downsampler):
+ z = submodel(z,temb=None)
+ z = downmodel(z)
+
+ if self.do_reshape:
+ z = rearrange(z,'b c h w -> b (h w) c')
+ return z
+
diff --git a/gligen/ldm/modules/diffusionmodules/openaimodel.py b/gligen/ldm/modules/diffusionmodules/openaimodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..e96ba0266e47c20d4c11de4b94064e27a595ad3b
--- /dev/null
+++ b/gligen/ldm/modules/diffusionmodules/openaimodel.py
@@ -0,0 +1,489 @@
+from abc import abstractmethod
+from functools import partial
+import math
+
+import numpy as np
+import random
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ldm.modules.diffusionmodules.util import (
+ conv_nd,
+ linear,
+ avg_pool_nd,
+ zero_module,
+ normalization,
+ timestep_embedding,
+)
+from ldm.modules.attention import SpatialTransformer
+from torch.utils import checkpoint
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb, context, objs):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb)
+ elif isinstance(layer, SpatialTransformer):
+ x = layer(x, context, objs)
+ else:
+ x = layer(x)
+ return x
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+ )
+ else:
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
+ :param up: if True, use this block for upsampling.
+ :param down: if True, use this block for downsampling.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_conv=False,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ up=False,
+ down=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ nn.SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+
+ self.updown = up or down
+
+ if up:
+ self.h_upd = Upsample(channels, False, dims)
+ self.x_upd = Upsample(channels, False, dims)
+ elif down:
+ self.h_upd = Downsample(channels, False, dims)
+ self.x_upd = Downsample(channels, False, dims)
+ else:
+ self.h_upd = self.x_upd = nn.Identity()
+
+ self.emb_layers = nn.Sequential(
+ nn.SiLU(),
+ linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ nn.SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+ ),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(
+ dims, channels, self.out_channels, 3, padding=1
+ )
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ def forward(self, x, emb):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ # return checkpoint(
+ # self._forward, (x, emb), self.parameters(), self.use_checkpoint
+ # )
+ if self.use_checkpoint and x.requires_grad:
+ return checkpoint.checkpoint(self._forward, x, emb )
+ else:
+ return self._forward(x, emb)
+
+
+ def _forward(self, x, emb):
+ if self.updown:
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+ h = in_rest(x)
+ h = self.h_upd(h)
+ x = self.x_upd(x)
+ h = in_conv(h)
+ else:
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = th.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ return self.skip_connection(x) + h
+
+
+
+
+class UNetModel(nn.Module):
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ use_checkpoint=False,
+ num_heads=8,
+ use_scale_shift_norm=False,
+ transformer_depth=1,
+ positive_len = 768, # this is pre-processing embedding len for each 'obj/box'
+ context_dim=None,
+ fuser_type = None,
+ is_inpaint = False,
+ is_style = False,
+ ):
+ super().__init__()
+
+ self.image_size = image_size
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.use_checkpoint = use_checkpoint
+ self.num_heads = num_heads
+ self.positive_len = positive_len
+ self.context_dim = context_dim
+ self.fuser_type = fuser_type
+ self.is_inpaint = is_inpaint
+ self.is_style = is_style
+ self.use_o2 = False # This will be turned into True by externally if use o2 durining training
+ assert fuser_type in ["gatedSA", "gatedCA"]
+
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+
+ total_in_channels = in_channels+in_channels+1 if self.is_inpaint else in_channels
+ self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, total_in_channels, model_channels, 3, padding=1))])
+
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+
+ # = = = = = = = = = = = = = = = = = = = = Down Branch = = = = = = = = = = = = = = = = = = = = #
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [ ResBlock(ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,) ]
+
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ dim_head = ch // num_heads
+ layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint))
+
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ input_block_chans.append(ch)
+
+ if level != len(channel_mult) - 1: # will not go to this downsample branch in the last feature
+ out_ch = ch
+ self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ dim_head = ch // num_heads
+
+ # self.input_blocks = [ C | RT RT D | RT RT D | RT RT D | R R ]
+
+
+ # = = = = = = = = = = = = = = = = = = = = BottleNeck = = = = = = = = = = = = = = = = = = = = #
+
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm),
+ SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint),
+ ResBlock(ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm))
+
+
+
+ # = = = = = = = = = = = = = = = = = = = = Up Branch = = = = = = = = = = = = = = = = = = = = #
+
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(num_res_blocks + 1):
+ ich = input_block_chans.pop()
+ layers = [ ResBlock(ch + ich,
+ time_embed_dim,
+ dropout,
+ out_channels=model_channels * mult,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm) ]
+ ch = model_channels * mult
+
+ if ds in attention_resolutions:
+ dim_head = ch // num_heads
+ layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) )
+ if level and i == num_res_blocks:
+ out_ch = ch
+ layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) )
+ ds //= 2
+
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+
+
+ # self.output_blocks = [ R R RU | RT RT RTU | RT RT RTU | RT RT RT ]
+
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+ )
+
+ if self.is_style:
+ from .positionnet_with_image import PositionNet
+ else:
+ from .positionnet import PositionNet
+ self.position_net = PositionNet(positive_len=positive_len, out_dim=context_dim)
+
+
+
+
+ def forward_position_net(self,input):
+ if ("boxes" in input):
+ boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
+ _ , self.max_box, _ = text_embeddings.shape
+ else:
+ dtype = input["x"].dtype
+ batch = input["x"].shape[0]
+ device = input["x"].device
+ boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
+ masks = th.zeros(batch, self.max_box).type(dtype).to(device)
+ text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
+ if self.training and random.random() < 0.1: # random drop for guidance
+ boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
+
+ objs = self.position_net( boxes, masks, text_embeddings ) # B*N*C
+
+ return objs
+
+
+
+
+
+ def forward_position_net_with_image(self,input):
+
+ if ("boxes" in input):
+ boxes = input["boxes"]
+ masks = input["masks"]
+ text_masks = input["text_masks"]
+ image_masks = input["image_masks"]
+ text_embeddings = input["text_embeddings"]
+ image_embeddings = input["image_embeddings"]
+ _ , self.max_box, _ = text_embeddings.shape
+ else:
+ dtype = input["x"].dtype
+ batch = input["x"].shape[0]
+ device = input["x"].device
+ boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
+ masks = th.zeros(batch, self.max_box).type(dtype).to(device)
+ text_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
+ image_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
+ text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
+ image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
+
+ if self.training and random.random() < 0.1: # random drop for guidance
+ boxes = boxes*0
+ masks = masks*0
+ text_masks = text_masks*0
+ image_masks = image_masks*0
+ text_embeddings = text_embeddings*0
+ image_embeddings = image_embeddings*0
+
+ objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) # B*N*C
+
+ return objs
+
+
+
+
+
+ def forward(self, input):
+
+ if self.is_style:
+ objs = self.forward_position_net_with_image(input)
+ else:
+ objs = self.forward_position_net(input)
+
+
+ hs = []
+
+ t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False)
+ if self.use_o2:
+ t_emb = t_emb.to(th.float16) # not sure why apex will not cast this
+ emb = self.time_embed(t_emb)
+
+
+ h = input["x"]
+ if self.is_inpaint:
+ h = th.cat( [h, input["inpainting_extra_input"]], dim=1 )
+ context = input["context"]
+
+
+ for module in self.input_blocks:
+ h = module(h, emb, context, objs)
+ hs.append(h)
+
+ h = self.middle_block(h, emb, context, objs)
+
+ for module in self.output_blocks:
+ h = th.cat([h, hs.pop()], dim=1)
+ h = module(h, emb, context, objs)
+
+ return self.out(h)
+
+
+
+
+
+
+
+
+
+
diff --git a/gligen/ldm/modules/diffusionmodules/positionnet.py b/gligen/ldm/modules/diffusionmodules/positionnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..8cfa9bf3a43964b1e1669fec71d2d32356356e70
--- /dev/null
+++ b/gligen/ldm/modules/diffusionmodules/positionnet.py
@@ -0,0 +1,50 @@
+import torch
+import torch.nn as nn
+from ldm.modules.attention import BasicTransformerBlock
+from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
+import torch.nn.functional as F
+
+
+
+class PositionNet(nn.Module):
+ def __init__(self, positive_len, out_dim, fourier_freqs=8):
+ super().__init__()
+ self.positive_len = positive_len
+ self.out_dim = out_dim
+
+ self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
+ self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
+
+ self.linears = nn.Sequential(
+ nn.Linear( self.positive_len + self.position_dim, 512),
+ nn.SiLU(),
+ nn.Linear( 512, 512),
+ nn.SiLU(),
+ nn.Linear(512, out_dim),
+ )
+
+ self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
+ self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
+
+
+ def forward(self, boxes, masks, positive_embeddings):
+ B, N, _ = boxes.shape
+ masks = masks.unsqueeze(-1)
+
+ # embedding position (it may includes padding as placeholder)
+ xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
+
+ # learnable null embedding
+ positive_null = self.null_positive_feature.view(1,1,-1)
+ xyxy_null = self.null_position_feature.view(1,1,-1)
+
+ # replace padding with learnable null embedding
+ positive_embeddings = positive_embeddings*masks + (1-masks)*positive_null
+ xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
+
+ objs = self.linears( torch.cat([positive_embeddings, xyxy_embedding], dim=-1) )
+ assert objs.shape == torch.Size([B,N,self.out_dim])
+ return objs
+
+
+
diff --git a/gligen/ldm/modules/diffusionmodules/positionnet_with_image.py b/gligen/ldm/modules/diffusionmodules/positionnet_with_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..2ca5480992b80a401b73227467a705231689963d
--- /dev/null
+++ b/gligen/ldm/modules/diffusionmodules/positionnet_with_image.py
@@ -0,0 +1,68 @@
+import torch
+import torch.nn as nn
+from ldm.modules.attention import BasicTransformerBlock
+from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
+import torch.nn.functional as F
+
+
+
+class PositionNet(nn.Module):
+ def __init__(self, positive_len, out_dim, fourier_freqs=8):
+ super().__init__()
+ self.positive_len = positive_len
+ self.out_dim = out_dim
+
+ self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
+ self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
+
+ # -------------------------------------------------------------- #
+ self.linears_text = nn.Sequential(
+ nn.Linear( self.positive_len + self.position_dim, 512),
+ nn.SiLU(),
+ nn.Linear( 512, 512),
+ nn.SiLU(),
+ nn.Linear(512, out_dim),
+ )
+
+ self.linears_image = nn.Sequential(
+ nn.Linear( self.positive_len + self.position_dim, 512),
+ nn.SiLU(),
+ nn.Linear( 512, 512),
+ nn.SiLU(),
+ nn.Linear(512, out_dim),
+ )
+
+ # -------------------------------------------------------------- #
+ self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
+ self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
+ self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
+
+
+ def forward(self, boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings):
+ B, N, _ = boxes.shape
+ masks = masks.unsqueeze(-1) # B*N*1
+ text_masks = text_masks.unsqueeze(-1) # B*N*1
+ image_masks = image_masks.unsqueeze(-1) # B*N*1
+
+ # embedding position (it may includes padding as placeholder)
+ xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
+
+ # learnable null embedding
+ text_null = self.null_text_feature.view(1,1,-1) # 1*1*C
+ image_null = self.null_image_feature.view(1,1,-1) # 1*1*C
+ xyxy_null = self.null_position_feature.view(1,1,-1) # 1*1*C
+
+ # replace padding with learnable null embedding
+ text_embeddings = text_embeddings*text_masks + (1-text_masks)*text_null
+ image_embeddings = image_embeddings*image_masks + (1-image_masks)*image_null
+ xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
+
+ objs_text = self.linears_text( torch.cat([text_embeddings, xyxy_embedding], dim=-1) )
+ objs_image = self.linears_image( torch.cat([image_embeddings,xyxy_embedding], dim=-1) )
+ objs = torch.cat( [objs_text,objs_image], dim=1 )
+
+ assert objs.shape == torch.Size([B,N*2,self.out_dim])
+ return objs
+
+
+
diff --git a/gligen/ldm/modules/diffusionmodules/util.py b/gligen/ldm/modules/diffusionmodules/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..753ddfbdd20fdfbf9ce72d960fadf76abfbca6d7
--- /dev/null
+++ b/gligen/ldm/modules/diffusionmodules/util.py
@@ -0,0 +1,277 @@
+import os
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+
+from ldm.util import instantiate_from_config
+
+
+
+class FourierEmbedder():
+ def __init__(self, num_freqs=64, temperature=100):
+
+ self.num_freqs = num_freqs
+ self.temperature = temperature
+ self.freq_bands = temperature ** ( torch.arange(num_freqs) / num_freqs )
+
+ @ torch.no_grad()
+ def __call__(self, x, cat_dim=-1):
+ "x: arbitrary shape of tensor. dim: cat dim"
+ out = []
+ for freq in self.freq_bands:
+ out.append( torch.sin( freq*x ) )
+ out.append( torch.cos( freq*x ) )
+ return torch.cat(out, cat_dim)
+
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if schedule == "linear":
+ betas = (
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+ )
+
+ elif schedule == "cosine":
+ timesteps = (
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+ )
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
+ alphas = torch.cos(alphas).pow(2)
+ alphas = alphas / alphas[0]
+ betas = 1 - alphas[1:] / alphas[:-1]
+ betas = np.clip(betas, a_min=0, a_max=0.999)
+
+ elif schedule == "sqrt_linear":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+ elif schedule == "sqrt":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+ else:
+ raise ValueError(f"schedule '{schedule}' unknown.")
+ return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+ if ddim_discr_method == 'uniform':
+ c = num_ddpm_timesteps // num_ddim_timesteps
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+ elif ddim_discr_method == 'quad':
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+ else:
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
+ steps_out = ddim_timesteps + 1
+ if verbose:
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
+ return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+ # select alphas for computing the variance schedule
+ alphas = alphacums[ddim_timesteps]
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+ if verbose:
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+ print(f'For the chosen value of eta, which is {eta}, '
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+ return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+
+ with torch.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with torch.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = torch.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+ #return super().forward(x).type(x.dtype)
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+ def __init__(self, c_concat_config, c_crossattn_config):
+ super().__init__()
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+ def forward(self, c_concat, c_crossattn):
+ c_concat = self.concat_conditioner(c_concat)
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/gligen/ldm/modules/distributions/__init__.py b/gligen/ldm/modules/distributions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/gligen/ldm/modules/distributions/distributions.py b/gligen/ldm/modules/distributions/distributions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9
--- /dev/null
+++ b/gligen/ldm/modules/distributions/distributions.py
@@ -0,0 +1,92 @@
+import torch
+import numpy as np
+
+
+class AbstractDistribution:
+ def sample(self):
+ raise NotImplementedError()
+
+ def mode(self):
+ raise NotImplementedError()
+
+
+class DiracDistribution(AbstractDistribution):
+ def __init__(self, value):
+ self.value = value
+
+ def sample(self):
+ return self.value
+
+ def mode(self):
+ return self.value
+
+
+class DiagonalGaussianDistribution(object):
+ def __init__(self, parameters, deterministic=False):
+ self.parameters = parameters
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+ self.deterministic = deterministic
+ self.std = torch.exp(0.5 * self.logvar)
+ self.var = torch.exp(self.logvar)
+ if self.deterministic:
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
+
+ def sample(self):
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
+ return x
+
+ def kl(self, other=None):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ else:
+ if other is None:
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ + self.var - 1.0 - self.logvar,
+ dim=[1, 2, 3])
+ else:
+ return 0.5 * torch.sum(
+ torch.pow(self.mean - other.mean, 2) / other.var
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
+ dim=[1, 2, 3])
+
+ def nll(self, sample, dims=[1,2,3]):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ logtwopi = np.log(2.0 * np.pi)
+ return 0.5 * torch.sum(
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+ dim=dims)
+
+ def mode(self):
+ return self.mean
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+ """
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
+ Compute the KL divergence between two gaussians.
+ Shapes are automatically broadcasted, so batches can be compared to
+ scalars, among other use cases.
+ """
+ tensor = None
+ for obj in (mean1, logvar1, mean2, logvar2):
+ if isinstance(obj, torch.Tensor):
+ tensor = obj
+ break
+ assert tensor is not None, "at least one argument must be a Tensor"
+
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
+ # Tensors, but it does not work for torch.exp().
+ logvar1, logvar2 = [
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
+ for x in (logvar1, logvar2)
+ ]
+
+ return 0.5 * (
+ -1.0
+ + logvar2
+ - logvar1
+ + torch.exp(logvar1 - logvar2)
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
+ )
diff --git a/gligen/ldm/modules/ema.py b/gligen/ldm/modules/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..c8c75af43565f6e140287644aaaefa97dd6e67c5
--- /dev/null
+++ b/gligen/ldm/modules/ema.py
@@ -0,0 +1,76 @@
+import torch
+from torch import nn
+
+
+class LitEma(nn.Module):
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
+ super().__init__()
+ if decay < 0.0 or decay > 1.0:
+ raise ValueError('Decay must be between 0 and 1')
+
+ self.m_name2s_name = {}
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
+ else torch.tensor(-1,dtype=torch.int))
+
+ for name, p in model.named_parameters():
+ if p.requires_grad:
+ #remove as '.'-character is not allowed in buffers
+ s_name = name.replace('.','')
+ self.m_name2s_name.update({name:s_name})
+ self.register_buffer(s_name,p.clone().detach().data)
+
+ self.collected_params = []
+
+ def forward(self,model):
+ decay = self.decay
+
+ if self.num_updates >= 0:
+ self.num_updates += 1
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
+
+ one_minus_decay = 1.0 - decay
+
+ with torch.no_grad():
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+
+ for key in m_param:
+ if m_param[key].requires_grad:
+ sname = self.m_name2s_name[key]
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+ else:
+ assert not key in self.m_name2s_name
+
+ def copy_to(self, model):
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+ for key in m_param:
+ if m_param[key].requires_grad:
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+ else:
+ assert not key in self.m_name2s_name
+
+ def store(self, parameters):
+ """
+ Save the current parameters for restoring later.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ temporarily stored.
+ """
+ self.collected_params = [param.clone() for param in parameters]
+
+ def restore(self, parameters):
+ """
+ Restore the parameters stored with the `store` method.
+ Useful to validate the model with EMA parameters without affecting the
+ original optimization process. Store the parameters before the
+ `copy_to` method. After validation (or model saving), use this to
+ restore the former parameters.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ updated with the stored parameters.
+ """
+ for c_param, param in zip(self.collected_params, parameters):
+ param.data.copy_(c_param.data)
diff --git a/gligen/ldm/modules/encoders/__init__.py b/gligen/ldm/modules/encoders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/gligen/ldm/modules/encoders/modules.py b/gligen/ldm/modules/encoders/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..63eb8244924c71e101e6908f913e1ee51815525e
--- /dev/null
+++ b/gligen/ldm/modules/encoders/modules.py
@@ -0,0 +1,245 @@
+import torch
+import torch.nn as nn
+from functools import partial
+import clip
+from einops import rearrange, repeat
+from transformers import CLIPTokenizer, CLIPTextModel
+import kornia
+
+from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
+
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class'):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+
+ def forward(self, batch, key=None):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ c = self.embedding(c)
+ return c
+
+
+class TransformerEmbedder(AbstractEncoder):
+ """Some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
+ super().__init__()
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer))
+
+ def forward(self, tokens):
+ tokens = tokens.to(self.device) # meh
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, x):
+ return self(x)
+
+
+class BERTTokenizer(AbstractEncoder):
+ """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
+ def __init__(self, device="cuda", vq_interface=True, max_length=77):
+ super().__init__()
+ from transformers import BertTokenizerFast # TODO: add to reuquirements
+ self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+ self.device = device
+ self.vq_interface = vq_interface
+ self.max_length = max_length
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt",
+ return_offsets_mapping=True)
+ tokens = batch_encoding["input_ids"].to(self.device)
+ offset_mapping = batch_encoding["offset_mapping"]
+ return tokens, offset_mapping
+
+ @torch.no_grad()
+ def encode(self, text):
+ tokens = self(text)
+ if not self.vq_interface:
+ return tokens
+ return None, None, [None, None, tokens]
+
+ def decode(self, text):
+ return text
+
+
+class BERTEmbedder(AbstractEncoder):
+ """Uses the BERT tokenizr model and add some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
+ device="cuda",use_tokenizer=True, embedding_dropout=0.0):
+ super().__init__()
+ self.use_tknz_fn = use_tokenizer
+ if self.use_tknz_fn:
+ self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer),
+ emb_dropout=embedding_dropout)
+
+ def forward(self, text, return_offset_mapping=False):
+ if self.use_tknz_fn:
+ tokens, offset_mapping = self.tknz_fn(text)#.to(self.device)
+ else:
+ assert False
+ tokens = text
+ z = self.transformer(tokens, return_embeddings=True)
+
+ if return_offset_mapping:
+ return z, offset_mapping
+ else:
+ return z
+
+ def encode(self, text, return_offset_mapping=False):
+ # output of length 77
+ return self(text, return_offset_mapping)
+
+
+class SpatialRescaler(nn.Module):
+ def __init__(self,
+ n_stages=1,
+ method='bilinear',
+ multiplier=0.5,
+ in_channels=3,
+ out_channels=None,
+ bias=False):
+ super().__init__()
+ self.n_stages = n_stages
+ assert self.n_stages >= 0
+ assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
+ self.multiplier = multiplier
+ self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
+ self.remap_output = out_channels is not None
+ if self.remap_output:
+ print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
+ self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
+
+ def forward(self,x):
+ for stage in range(self.n_stages):
+ x = self.interpolator(x, scale_factor=self.multiplier)
+
+
+ if self.remap_output:
+ x = self.channel_mapper(x)
+ return x
+
+ def encode(self, x):
+ return self(x)
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from Hugging Face)"""
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
+ super().__init__()
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ self.freeze()
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text, return_pooler_output=False):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens)
+
+ z = outputs.last_hidden_state
+
+ if not return_pooler_output:
+ return z
+ else:
+ return z, outputs.pooler_output
+
+ def encode(self, text, return_pooler_output=False):
+ return self(text, return_pooler_output)
+
+
+class FrozenCLIPTextEmbedder(nn.Module):
+ """
+ Uses the CLIP transformer encoder for text.
+ """
+ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
+ super().__init__()
+ self.model, _ = clip.load(version, jit=False, device="cpu")
+ self.device = device
+ self.max_length = max_length
+ self.n_repeat = n_repeat
+ self.normalize = normalize
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = clip.tokenize(text).to(self.device)
+ z = self.model.encode_text(tokens)
+ if self.normalize:
+ z = z / torch.linalg.norm(z, dim=1, keepdim=True)
+ return z
+
+ def encode(self, text):
+ z = self(text)
+ if z.ndim==2:
+ z = z[:, None, :]
+ z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
+ return z
+
+
+class FrozenClipImageEmbedder(nn.Module):
+ """
+ Uses the CLIP image encoder.
+ """
+ def __init__(
+ self,
+ model,
+ jit=False,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ antialias=False,
+ ):
+ super().__init__()
+ self.model, _ = clip.load(name=model, device=device, jit=jit)
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic',align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # renormalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def forward(self, x):
+ # x is assumed to be in range [-1,1]
+ return self.model.encode_image(self.preprocess(x))
+
+
+if __name__ == "__main__":
+ from ldm.util import count_params
+ model = FrozenCLIPEmbedder()
+ count_params(model, verbose=True)
\ No newline at end of file
diff --git a/gligen/ldm/modules/encoders/modules_backup.py b/gligen/ldm/modules/encoders/modules_backup.py
new file mode 100644
index 0000000000000000000000000000000000000000..ededbe43e9e0466b9979079060692e38f561d4d3
--- /dev/null
+++ b/gligen/ldm/modules/encoders/modules_backup.py
@@ -0,0 +1,234 @@
+import torch
+import torch.nn as nn
+from functools import partial
+import clip
+from einops import rearrange, repeat
+from transformers import CLIPTokenizer, CLIPTextModel
+import kornia
+
+from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
+
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class'):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+
+ def forward(self, batch, key=None):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ c = self.embedding(c)
+ return c
+
+
+class TransformerEmbedder(AbstractEncoder):
+ """Some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
+ super().__init__()
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer))
+
+ def forward(self, tokens):
+ tokens = tokens.to(self.device) # meh
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, x):
+ return self(x)
+
+
+class BERTTokenizer(AbstractEncoder):
+ """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
+ def __init__(self, device="cuda", vq_interface=True, max_length=77):
+ super().__init__()
+ from transformers import BertTokenizerFast # TODO: add to reuquirements
+ self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+ self.device = device
+ self.vq_interface = vq_interface
+ self.max_length = max_length
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ return tokens
+
+ @torch.no_grad()
+ def encode(self, text):
+ tokens = self(text)
+ if not self.vq_interface:
+ return tokens
+ return None, None, [None, None, tokens]
+
+ def decode(self, text):
+ return text
+
+
+class BERTEmbedder(AbstractEncoder):
+ """Uses the BERT tokenizr model and add some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
+ device="cuda",use_tokenizer=True, embedding_dropout=0.0):
+ super().__init__()
+ self.use_tknz_fn = use_tokenizer
+ if self.use_tknz_fn:
+ self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer),
+ emb_dropout=embedding_dropout)
+
+ def forward(self, text):
+ if self.use_tknz_fn:
+ tokens = self.tknz_fn(text)#.to(self.device)
+ else:
+ tokens = text
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, text):
+ # output of length 77
+ return self(text)
+
+
+class SpatialRescaler(nn.Module):
+ def __init__(self,
+ n_stages=1,
+ method='bilinear',
+ multiplier=0.5,
+ in_channels=3,
+ out_channels=None,
+ bias=False):
+ super().__init__()
+ self.n_stages = n_stages
+ assert self.n_stages >= 0
+ assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
+ self.multiplier = multiplier
+ self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
+ self.remap_output = out_channels is not None
+ if self.remap_output:
+ print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
+ self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
+
+ def forward(self,x):
+ for stage in range(self.n_stages):
+ x = self.interpolator(x, scale_factor=self.multiplier)
+
+
+ if self.remap_output:
+ x = self.channel_mapper(x)
+ return x
+
+ def encode(self, x):
+ return self(x)
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from Hugging Face)"""
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
+ super().__init__()
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ self.freeze()
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens)
+
+ z = outputs.last_hidden_state
+ return z
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenCLIPTextEmbedder(nn.Module):
+ """
+ Uses the CLIP transformer encoder for text.
+ """
+ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
+ super().__init__()
+ self.model, _ = clip.load(version, jit=False, device="cpu")
+ self.device = device
+ self.max_length = max_length
+ self.n_repeat = n_repeat
+ self.normalize = normalize
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = clip.tokenize(text).to(self.device)
+ z = self.model.encode_text(tokens)
+ if self.normalize:
+ z = z / torch.linalg.norm(z, dim=1, keepdim=True)
+ return z
+
+ def encode(self, text):
+ z = self(text)
+ if z.ndim==2:
+ z = z[:, None, :]
+ z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
+ return z
+
+
+class FrozenClipImageEmbedder(nn.Module):
+ """
+ Uses the CLIP image encoder.
+ """
+ def __init__(
+ self,
+ model,
+ jit=False,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ antialias=False,
+ ):
+ super().__init__()
+ self.model, _ = clip.load(name=model, device=device, jit=jit)
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic',align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # renormalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def forward(self, x):
+ # x is assumed to be in range [-1,1]
+ return self.model.encode_image(self.preprocess(x))
+
+
+if __name__ == "__main__":
+ from ldm.util import count_params
+ model = FrozenCLIPEmbedder()
+ count_params(model, verbose=True)
\ No newline at end of file
diff --git a/gligen/ldm/modules/image_degradation/__init__.py b/gligen/ldm/modules/image_degradation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7836cada81f90ded99c58d5942eea4c3477f58fc
--- /dev/null
+++ b/gligen/ldm/modules/image_degradation/__init__.py
@@ -0,0 +1,2 @@
+from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
+from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/gligen/ldm/modules/image_degradation/bsrgan.py b/gligen/ldm/modules/image_degradation/bsrgan.py
new file mode 100644
index 0000000000000000000000000000000000000000..32ef56169978e550090261cddbcf5eb611a6173b
--- /dev/null
+++ b/gligen/ldm/modules/image_degradation/bsrgan.py
@@ -0,0 +1,730 @@
+# -*- coding: utf-8 -*-
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(30, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ elif i == 1:
+ image = add_blur(image, sf=sf)
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image":image}
+ return example
+
+
+# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
+def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
+ """
+ This is an extended degradation model by combining
+ the degradation models of BSRGAN and Real-ESRGAN
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ use_shuffle: the degradation shuffle
+ use_sharp: sharpening the img
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ if use_sharp:
+ img = add_sharpening(img)
+ hq = img.copy()
+
+ if random.random() < shuffle_prob:
+ shuffle_order = random.sample(range(13), 13)
+ else:
+ shuffle_order = list(range(13))
+ # local shuffle for noise, JPEG is always the last one
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
+
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
+
+ for i in shuffle_order:
+ if i == 0:
+ img = add_blur(img, sf=sf)
+ elif i == 1:
+ img = add_resize(img, sf=sf)
+ elif i == 2:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 3:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 4:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 5:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ elif i == 6:
+ img = add_JPEG_noise(img)
+ elif i == 7:
+ img = add_blur(img, sf=sf)
+ elif i == 8:
+ img = add_resize(img, sf=sf)
+ elif i == 9:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 10:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 11:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 12:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ else:
+ print('check the shuffle!')
+
+ # resize to desired size
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
+
+ return img, hq
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ print(img)
+ img = util.uint2single(img)
+ print(img)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_lq = deg_fn(img)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
+
+
diff --git a/gligen/ldm/modules/image_degradation/bsrgan_light.py b/gligen/ldm/modules/image_degradation/bsrgan_light.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e1f823996bf559e9b015ea9aa2b3cd38dd13af1
--- /dev/null
+++ b/gligen/ldm/modules/image_degradation/bsrgan_light.py
@@ -0,0 +1,650 @@
+# -*- coding: utf-8 -*-
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+
+ wd2 = wd2/4
+ wd = wd/4
+
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(80, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ # elif i == 1:
+ # image = add_blur(image, sf=sf)
+
+ if i == 0:
+ pass
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.8:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+ #
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image": image}
+ return example
+
+
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_hq = img
+ img_lq = deg_fn(img)["image"]
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
diff --git a/gligen/ldm/modules/image_degradation/utils_image.py b/gligen/ldm/modules/image_degradation/utils_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..0175f155ad900ae33c3c46ed87f49b352e3faf98
--- /dev/null
+++ b/gligen/ldm/modules/image_degradation/utils_image.py
@@ -0,0 +1,916 @@
+import os
+import math
+import random
+import numpy as np
+import torch
+import cv2
+from torchvision.utils import make_grid
+from datetime import datetime
+#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
+
+
+os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
+
+
+'''
+# --------------------------------------------
+# Kai Zhang (github: https://github.com/cszn)
+# 03/Mar/2019
+# --------------------------------------------
+# https://github.com/twhui/SRGAN-pyTorch
+# https://github.com/xinntao/BasicSR
+# --------------------------------------------
+'''
+
+
+IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
+
+
+def is_image_file(filename):
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
+
+
+def get_timestamp():
+ return datetime.now().strftime('%y%m%d-%H%M%S')
+
+
+def imshow(x, title=None, cbar=False, figsize=None):
+ plt.figure(figsize=figsize)
+ plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
+ if title:
+ plt.title(title)
+ if cbar:
+ plt.colorbar()
+ plt.show()
+
+
+def surf(Z, cmap='rainbow', figsize=None):
+ plt.figure(figsize=figsize)
+ ax3 = plt.axes(projection='3d')
+
+ w, h = Z.shape[:2]
+ xx = np.arange(0,w,1)
+ yy = np.arange(0,h,1)
+ X, Y = np.meshgrid(xx, yy)
+ ax3.plot_surface(X,Y,Z,cmap=cmap)
+ #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
+ plt.show()
+
+
+'''
+# --------------------------------------------
+# get image pathes
+# --------------------------------------------
+'''
+
+
+def get_image_paths(dataroot):
+ paths = None # return None if dataroot is None
+ if dataroot is not None:
+ paths = sorted(_get_paths_from_images(dataroot))
+ return paths
+
+
+def _get_paths_from_images(path):
+ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
+ images = []
+ for dirpath, _, fnames in sorted(os.walk(path)):
+ for fname in sorted(fnames):
+ if is_image_file(fname):
+ img_path = os.path.join(dirpath, fname)
+ images.append(img_path)
+ assert images, '{:s} has no valid image file'.format(path)
+ return images
+
+
+'''
+# --------------------------------------------
+# split large images into small images
+# --------------------------------------------
+'''
+
+
+def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
+ w, h = img.shape[:2]
+ patches = []
+ if w > p_max and h > p_max:
+ w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
+ h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
+ w1.append(w-p_size)
+ h1.append(h-p_size)
+# print(w1)
+# print(h1)
+ for i in w1:
+ for j in h1:
+ patches.append(img[i:i+p_size, j:j+p_size,:])
+ else:
+ patches.append(img)
+
+ return patches
+
+
+def imssave(imgs, img_path):
+ """
+ imgs: list, N images of size WxHxC
+ """
+ img_name, ext = os.path.splitext(os.path.basename(img_path))
+
+ for i, img in enumerate(imgs):
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
+ cv2.imwrite(new_path, img)
+
+
+def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
+ """
+ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
+ and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
+ will be splitted.
+ Args:
+ original_dataroot:
+ taget_dataroot:
+ p_size: size of small images
+ p_overlap: patch size in training is a good choice
+ p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
+ """
+ paths = get_image_paths(original_dataroot)
+ for img_path in paths:
+ # img_name, ext = os.path.splitext(os.path.basename(img_path))
+ img = imread_uint(img_path, n_channels=n_channels)
+ patches = patches_from_image(img, p_size, p_overlap, p_max)
+ imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
+ #if original_dataroot == taget_dataroot:
+ #del img_path
+
+'''
+# --------------------------------------------
+# makedir
+# --------------------------------------------
+'''
+
+
+def mkdir(path):
+ if not os.path.exists(path):
+ os.makedirs(path)
+
+
+def mkdirs(paths):
+ if isinstance(paths, str):
+ mkdir(paths)
+ else:
+ for path in paths:
+ mkdir(path)
+
+
+def mkdir_and_rename(path):
+ if os.path.exists(path):
+ new_name = path + '_archived_' + get_timestamp()
+ print('Path already exists. Rename it to [{:s}]'.format(new_name))
+ os.rename(path, new_name)
+ os.makedirs(path)
+
+
+'''
+# --------------------------------------------
+# read image from path
+# opencv is fast, but read BGR numpy image
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# get uint8 image of size HxWxn_channles (RGB)
+# --------------------------------------------
+def imread_uint(path, n_channels=3):
+ # input: path
+ # output: HxWx3(RGB or GGG), or HxWx1 (G)
+ if n_channels == 1:
+ img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
+ img = np.expand_dims(img, axis=2) # HxWx1
+ elif n_channels == 3:
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
+ if img.ndim == 2:
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
+ else:
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
+ return img
+
+
+# --------------------------------------------
+# matlab's imwrite
+# --------------------------------------------
+def imsave(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+def imwrite(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+
+
+# --------------------------------------------
+# get single image of size HxWxn_channles (BGR)
+# --------------------------------------------
+def read_img(path):
+ # read image by cv2
+ # return: Numpy float32, HWC, BGR, [0,1]
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
+ img = img.astype(np.float32) / 255.
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ # some images have 4 channels
+ if img.shape[2] > 3:
+ img = img[:, :, :3]
+ return img
+
+
+'''
+# --------------------------------------------
+# image format conversion
+# --------------------------------------------
+# numpy(single) <---> numpy(unit)
+# numpy(single) <---> tensor
+# numpy(unit) <---> tensor
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# numpy(single) [0, 1] <---> numpy(unit)
+# --------------------------------------------
+
+
+def uint2single(img):
+
+ return np.float32(img/255.)
+
+
+def single2uint(img):
+
+ return np.uint8((img.clip(0, 1)*255.).round())
+
+
+def uint162single(img):
+
+ return np.float32(img/65535.)
+
+
+def single2uint16(img):
+
+ return np.uint16((img.clip(0, 1)*65535.).round())
+
+
+# --------------------------------------------
+# numpy(unit) (HxWxC or HxW) <---> tensor
+# --------------------------------------------
+
+
+# convert uint to 4-dimensional torch tensor
+def uint2tensor4(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
+
+
+# convert uint to 3-dimensional torch tensor
+def uint2tensor3(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
+
+
+# convert 2/3/4-dimensional torch tensor to uint
+def tensor2uint(img):
+ img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ return np.uint8((img*255.0).round())
+
+
+# --------------------------------------------
+# numpy(single) (HxWxC) <---> tensor
+# --------------------------------------------
+
+
+# convert single (HxWxC) to 3-dimensional torch tensor
+def single2tensor3(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
+
+
+# convert single (HxWxC) to 4-dimensional torch tensor
+def single2tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
+
+
+# convert torch tensor to single
+def tensor2single(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+
+ return img
+
+# convert torch tensor to single
+def tensor2single3(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ elif img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return img
+
+
+def single2tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
+
+
+def single32tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
+
+
+def single42tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
+
+
+# from skimage.io import imread, imsave
+def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
+ '''
+ Converts a torch Tensor into an image Numpy array of BGR channel order
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
+ '''
+ tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
+ tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
+ n_dim = tensor.dim()
+ if n_dim == 4:
+ n_img = len(tensor)
+ img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 3:
+ img_np = tensor.numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 2:
+ img_np = tensor.numpy()
+ else:
+ raise TypeError(
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
+ if out_type == np.uint8:
+ img_np = (img_np * 255.0).round()
+ # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
+ return img_np.astype(out_type)
+
+
+'''
+# --------------------------------------------
+# Augmentation, flipe and/or rotate
+# --------------------------------------------
+# The following two are enough.
+# (1) augmet_img: numpy image of WxHxC or WxH
+# (2) augment_img_tensor4: tensor image 1xCxWxH
+# --------------------------------------------
+'''
+
+
+def augment_img(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return np.flipud(np.rot90(img))
+ elif mode == 2:
+ return np.flipud(img)
+ elif mode == 3:
+ return np.rot90(img, k=3)
+ elif mode == 4:
+ return np.flipud(np.rot90(img, k=2))
+ elif mode == 5:
+ return np.rot90(img)
+ elif mode == 6:
+ return np.rot90(img, k=2)
+ elif mode == 7:
+ return np.flipud(np.rot90(img, k=3))
+
+
+def augment_img_tensor4(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.rot90(1, [2, 3]).flip([2])
+ elif mode == 2:
+ return img.flip([2])
+ elif mode == 3:
+ return img.rot90(3, [2, 3])
+ elif mode == 4:
+ return img.rot90(2, [2, 3]).flip([2])
+ elif mode == 5:
+ return img.rot90(1, [2, 3])
+ elif mode == 6:
+ return img.rot90(2, [2, 3])
+ elif mode == 7:
+ return img.rot90(3, [2, 3]).flip([2])
+
+
+def augment_img_tensor(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ img_size = img.size()
+ img_np = img.data.cpu().numpy()
+ if len(img_size) == 3:
+ img_np = np.transpose(img_np, (1, 2, 0))
+ elif len(img_size) == 4:
+ img_np = np.transpose(img_np, (2, 3, 1, 0))
+ img_np = augment_img(img_np, mode=mode)
+ img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
+ if len(img_size) == 3:
+ img_tensor = img_tensor.permute(2, 0, 1)
+ elif len(img_size) == 4:
+ img_tensor = img_tensor.permute(3, 2, 0, 1)
+
+ return img_tensor.type_as(img)
+
+
+def augment_img_np3(img, mode=0):
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.transpose(1, 0, 2)
+ elif mode == 2:
+ return img[::-1, :, :]
+ elif mode == 3:
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 4:
+ return img[:, ::-1, :]
+ elif mode == 5:
+ img = img[:, ::-1, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 6:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ return img
+ elif mode == 7:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+
+
+def augment_imgs(img_list, hflip=True, rot=True):
+ # horizontal flip OR rotate
+ hflip = hflip and random.random() < 0.5
+ vflip = rot and random.random() < 0.5
+ rot90 = rot and random.random() < 0.5
+
+ def _augment(img):
+ if hflip:
+ img = img[:, ::-1, :]
+ if vflip:
+ img = img[::-1, :, :]
+ if rot90:
+ img = img.transpose(1, 0, 2)
+ return img
+
+ return [_augment(img) for img in img_list]
+
+
+'''
+# --------------------------------------------
+# modcrop and shave
+# --------------------------------------------
+'''
+
+
+def modcrop(img_in, scale):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ if img.ndim == 2:
+ H, W = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r]
+ elif img.ndim == 3:
+ H, W, C = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r, :]
+ else:
+ raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
+ return img
+
+
+def shave(img_in, border=0):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ h, w = img.shape[:2]
+ img = img[border:h-border, border:w-border]
+ return img
+
+
+'''
+# --------------------------------------------
+# image processing process on numpy image
+# channel_convert(in_c, tar_type, img_list):
+# rgb2ycbcr(img, only_y=True):
+# bgr2ycbcr(img, only_y=True):
+# ycbcr2rgb(img):
+# --------------------------------------------
+'''
+
+
+def rgb2ycbcr(img, only_y=True):
+ '''same as matlab rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
+ [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def ycbcr2rgb(img):
+ '''same as matlab ycbcr2rgb
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
+ [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def bgr2ycbcr(img, only_y=True):
+ '''bgr version of rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
+ [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def channel_convert(in_c, tar_type, img_list):
+ # conversion among BGR, gray and y
+ if in_c == 3 and tar_type == 'gray': # BGR to gray
+ gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in gray_list]
+ elif in_c == 3 and tar_type == 'y': # BGR to y
+ y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in y_list]
+ elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
+ return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
+ else:
+ return img_list
+
+
+'''
+# --------------------------------------------
+# metric, PSNR and SSIM
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# PSNR
+# --------------------------------------------
+def calculate_psnr(img1, img2, border=0):
+ # img1 and img2 have range [0, 255]
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ mse = np.mean((img1 - img2)**2)
+ if mse == 0:
+ return float('inf')
+ return 20 * math.log10(255.0 / math.sqrt(mse))
+
+
+# --------------------------------------------
+# SSIM
+# --------------------------------------------
+def calculate_ssim(img1, img2, border=0):
+ '''calculate SSIM
+ the same outputs as MATLAB's
+ img1, img2: [0, 255]
+ '''
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ if img1.ndim == 2:
+ return ssim(img1, img2)
+ elif img1.ndim == 3:
+ if img1.shape[2] == 3:
+ ssims = []
+ for i in range(3):
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
+ return np.array(ssims).mean()
+ elif img1.shape[2] == 1:
+ return ssim(np.squeeze(img1), np.squeeze(img2))
+ else:
+ raise ValueError('Wrong input image dimensions.')
+
+
+def ssim(img1, img2):
+ C1 = (0.01 * 255)**2
+ C2 = (0.03 * 255)**2
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ kernel = cv2.getGaussianKernel(11, 1.5)
+ window = np.outer(kernel, kernel.transpose())
+
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
+ mu1_sq = mu1**2
+ mu2_sq = mu2**2
+ mu1_mu2 = mu1 * mu2
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
+
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
+ (sigma1_sq + sigma2_sq + C2))
+ return ssim_map.mean()
+
+
+'''
+# --------------------------------------------
+# matlab's bicubic imresize (numpy and torch) [0, 1]
+# --------------------------------------------
+'''
+
+
+# matlab 'imresize' function, now only support 'bicubic'
+def cubic(x):
+ absx = torch.abs(x)
+ absx2 = absx**2
+ absx3 = absx**3
+ return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
+ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
+
+
+def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
+ if (scale < 1) and (antialiasing):
+ # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
+ kernel_width = kernel_width / scale
+
+ # Output-space coordinates
+ x = torch.linspace(1, out_length, out_length)
+
+ # Input-space coordinates. Calculate the inverse mapping such that 0.5
+ # in output space maps to 0.5 in input space, and 0.5+scale in output
+ # space maps to 1.5 in input space.
+ u = x / scale + 0.5 * (1 - 1 / scale)
+
+ # What is the left-most pixel that can be involved in the computation?
+ left = torch.floor(u - kernel_width / 2)
+
+ # What is the maximum number of pixels that can be involved in the
+ # computation? Note: it's OK to use an extra pixel here; if the
+ # corresponding weights are all zero, it will be eliminated at the end
+ # of this function.
+ P = math.ceil(kernel_width) + 2
+
+ # The indices of the input pixels involved in computing the k-th output
+ # pixel are in row k of the indices matrix.
+ indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
+ 1, P).expand(out_length, P)
+
+ # The weights used to compute the k-th output pixel are in row k of the
+ # weights matrix.
+ distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
+ # apply cubic kernel
+ if (scale < 1) and (antialiasing):
+ weights = scale * cubic(distance_to_center * scale)
+ else:
+ weights = cubic(distance_to_center)
+ # Normalize the weights matrix so that each row sums to 1.
+ weights_sum = torch.sum(weights, 1).view(out_length, 1)
+ weights = weights / weights_sum.expand(out_length, P)
+
+ # If a column in weights is all zero, get rid of it. only consider the first and last column.
+ weights_zero_tmp = torch.sum((weights == 0), 0)
+ if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 1, P - 2)
+ weights = weights.narrow(1, 1, P - 2)
+ if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 0, P - 2)
+ weights = weights.narrow(1, 0, P - 2)
+ weights = weights.contiguous()
+ indices = indices.contiguous()
+ sym_len_s = -indices.min() + 1
+ sym_len_e = indices.max() - in_length
+ indices = indices + sym_len_s - 1
+ return weights, indices, int(sym_len_s), int(sym_len_e)
+
+
+# --------------------------------------------
+# imresize for tensor image [0, 1]
+# --------------------------------------------
+def imresize(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: pytorch tensor, CHW or HW [0,1]
+ # output: CHW or HW [0,1] w/o round
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(0)
+ in_C, in_H, in_W = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
+ img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:, :sym_len_Hs, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[:, -sym_len_He:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(in_C, out_H, in_W)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
+ out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :, :sym_len_Ws]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, :, -sym_len_We:]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(in_C, out_H, out_W)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+ return out_2
+
+
+# --------------------------------------------
+# imresize for numpy image [0, 1]
+# --------------------------------------------
+def imresize_np(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: Numpy, HWC or HW [0,1]
+ # output: HWC or HW [0,1] w/o round
+ img = torch.from_numpy(img)
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(2)
+
+ in_H, in_W, in_C = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
+ img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:sym_len_Hs, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[-sym_len_He:, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(out_H, in_W, in_C)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
+ out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :sym_len_Ws, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, -sym_len_We:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(out_H, out_W, in_C)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+
+ return out_2.numpy()
+
+
+if __name__ == '__main__':
+ print('---')
+# img = imread_uint('test.bmp', 3)
+# img = uint2single(img)
+# img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/gligen/ldm/modules/losses/__init__.py b/gligen/ldm/modules/losses/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..876d7c5bd6e3245ee77feb4c482b7a8143604ad5
--- /dev/null
+++ b/gligen/ldm/modules/losses/__init__.py
@@ -0,0 +1 @@
+from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
\ No newline at end of file
diff --git a/gligen/ldm/modules/losses/contperceptual.py b/gligen/ldm/modules/losses/contperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..672c1e32a1389def02461c0781339681060c540e
--- /dev/null
+++ b/gligen/ldm/modules/losses/contperceptual.py
@@ -0,0 +1,111 @@
+import torch
+import torch.nn as nn
+
+from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
+
+
+class LPIPSWithDiscriminator(nn.Module):
+ def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+ disc_loss="hinge"):
+
+ super().__init__()
+ assert disc_loss in ["hinge", "vanilla"]
+ self.kl_weight = kl_weight
+ self.pixel_weight = pixelloss_weight
+ self.perceptual_loss = LPIPS().eval()
+ self.perceptual_weight = perceptual_weight
+ # output log variance
+ self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
+
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+ n_layers=disc_num_layers,
+ use_actnorm=use_actnorm
+ ).apply(weights_init)
+ self.discriminator_iter_start = disc_start
+ self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
+ self.disc_factor = disc_factor
+ self.discriminator_weight = disc_weight
+ self.disc_conditional = disc_conditional
+
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+ if last_layer is not None:
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+ else:
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+ d_weight = d_weight * self.discriminator_weight
+ return d_weight
+
+ def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
+ global_step, last_layer=None, cond=None, split="train",
+ weights=None):
+ rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+ if self.perceptual_weight > 0:
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
+
+ nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
+ weighted_nll_loss = nll_loss
+ if weights is not None:
+ weighted_nll_loss = weights*nll_loss
+ weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
+ nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+ kl_loss = posteriors.kl()
+ kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
+
+ # now the GAN part
+ if optimizer_idx == 0:
+ # generator update
+ if cond is None:
+ assert not self.disc_conditional
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ else:
+ assert self.disc_conditional
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+ g_loss = -torch.mean(logits_fake)
+
+ if self.disc_factor > 0.0:
+ try:
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+ except RuntimeError:
+ assert not self.training
+ d_weight = torch.tensor(0.0)
+ else:
+ d_weight = torch.tensor(0.0)
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
+
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
+ "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
+ "{}/d_weight".format(split): d_weight.detach(),
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
+ "{}/g_loss".format(split): g_loss.detach().mean(),
+ }
+ return loss, log
+
+ if optimizer_idx == 1:
+ # second pass for discriminator update
+ if cond is None:
+ logits_real = self.discriminator(inputs.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ else:
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+ "{}/logits_real".format(split): logits_real.detach().mean(),
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
+ }
+ return d_loss, log
+
diff --git a/gligen/ldm/modules/losses/vqperceptual.py b/gligen/ldm/modules/losses/vqperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..f69981769e4bd5462600458c4fcf26620f7e4306
--- /dev/null
+++ b/gligen/ldm/modules/losses/vqperceptual.py
@@ -0,0 +1,167 @@
+import torch
+from torch import nn
+import torch.nn.functional as F
+from einops import repeat
+
+from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
+from taming.modules.losses.lpips import LPIPS
+from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
+
+
+def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
+ assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
+ loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
+ loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
+ loss_real = (weights * loss_real).sum() / weights.sum()
+ loss_fake = (weights * loss_fake).sum() / weights.sum()
+ d_loss = 0.5 * (loss_real + loss_fake)
+ return d_loss
+
+def adopt_weight(weight, global_step, threshold=0, value=0.):
+ if global_step < threshold:
+ weight = value
+ return weight
+
+
+def measure_perplexity(predicted_indices, n_embed):
+ # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
+ # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
+ encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
+ avg_probs = encodings.mean(0)
+ perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
+ cluster_use = torch.sum(avg_probs > 0)
+ return perplexity, cluster_use
+
+def l1(x, y):
+ return torch.abs(x-y)
+
+
+def l2(x, y):
+ return torch.pow((x-y), 2)
+
+
+class VQLPIPSWithDiscriminator(nn.Module):
+ def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+ disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
+ pixel_loss="l1"):
+ super().__init__()
+ assert disc_loss in ["hinge", "vanilla"]
+ assert perceptual_loss in ["lpips", "clips", "dists"]
+ assert pixel_loss in ["l1", "l2"]
+ self.codebook_weight = codebook_weight
+ self.pixel_weight = pixelloss_weight
+ if perceptual_loss == "lpips":
+ print(f"{self.__class__.__name__}: Running with LPIPS.")
+ self.perceptual_loss = LPIPS().eval()
+ else:
+ raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
+ self.perceptual_weight = perceptual_weight
+
+ if pixel_loss == "l1":
+ self.pixel_loss = l1
+ else:
+ self.pixel_loss = l2
+
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+ n_layers=disc_num_layers,
+ use_actnorm=use_actnorm,
+ ndf=disc_ndf
+ ).apply(weights_init)
+ self.discriminator_iter_start = disc_start
+ if disc_loss == "hinge":
+ self.disc_loss = hinge_d_loss
+ elif disc_loss == "vanilla":
+ self.disc_loss = vanilla_d_loss
+ else:
+ raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
+ print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
+ self.disc_factor = disc_factor
+ self.discriminator_weight = disc_weight
+ self.disc_conditional = disc_conditional
+ self.n_classes = n_classes
+
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+ if last_layer is not None:
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+ else:
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+ d_weight = d_weight * self.discriminator_weight
+ return d_weight
+
+ def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
+ global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
+ if not exists(codebook_loss):
+ codebook_loss = torch.tensor([0.]).to(inputs.device)
+ #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+ rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
+ if self.perceptual_weight > 0:
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
+ else:
+ p_loss = torch.tensor([0.0])
+
+ nll_loss = rec_loss
+ #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+ nll_loss = torch.mean(nll_loss)
+
+ # now the GAN part
+ if optimizer_idx == 0:
+ # generator update
+ if cond is None:
+ assert not self.disc_conditional
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ else:
+ assert self.disc_conditional
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+ g_loss = -torch.mean(logits_fake)
+
+ try:
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+ except RuntimeError:
+ assert not self.training
+ d_weight = torch.tensor(0.0)
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
+
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
+ "{}/quant_loss".format(split): codebook_loss.detach().mean(),
+ "{}/nll_loss".format(split): nll_loss.detach().mean(),
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
+ "{}/p_loss".format(split): p_loss.detach().mean(),
+ "{}/d_weight".format(split): d_weight.detach(),
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
+ "{}/g_loss".format(split): g_loss.detach().mean(),
+ }
+ if predicted_indices is not None:
+ assert self.n_classes is not None
+ with torch.no_grad():
+ perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
+ log[f"{split}/perplexity"] = perplexity
+ log[f"{split}/cluster_usage"] = cluster_usage
+ return loss, log
+
+ if optimizer_idx == 1:
+ # second pass for discriminator update
+ if cond is None:
+ logits_real = self.discriminator(inputs.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ else:
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+ "{}/logits_real".format(split): logits_real.detach().mean(),
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
+ }
+ return d_loss, log
diff --git a/gligen/ldm/modules/x_transformer.py b/gligen/ldm/modules/x_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fc15bf9cfe0111a910e7de33d04ffdec3877576
--- /dev/null
+++ b/gligen/ldm/modules/x_transformer.py
@@ -0,0 +1,641 @@
+"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
+import torch
+from torch import nn, einsum
+import torch.nn.functional as F
+from functools import partial
+from inspect import isfunction
+from collections import namedtuple
+from einops import rearrange, repeat, reduce
+
+# constants
+
+DEFAULT_DIM_HEAD = 64
+
+Intermediates = namedtuple('Intermediates', [
+ 'pre_softmax_attn',
+ 'post_softmax_attn'
+])
+
+LayerIntermediates = namedtuple('Intermediates', [
+ 'hiddens',
+ 'attn_intermediates'
+])
+
+
+class AbsolutePositionalEmbedding(nn.Module):
+ def __init__(self, dim, max_seq_len):
+ super().__init__()
+ self.emb = nn.Embedding(max_seq_len, dim)
+ self.init_()
+
+ def init_(self):
+ nn.init.normal_(self.emb.weight, std=0.02)
+
+ def forward(self, x):
+ n = torch.arange(x.shape[1], device=x.device)
+ return self.emb(n)[None, :, :]
+
+
+class FixedPositionalEmbedding(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
+ self.register_buffer('inv_freq', inv_freq)
+
+ def forward(self, x, seq_dim=1, offset=0):
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
+ return emb[None, :, :]
+
+
+# helpers
+
+def exists(val):
+ return val is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def always(val):
+ def inner(*args, **kwargs):
+ return val
+ return inner
+
+
+def not_equals(val):
+ def inner(x):
+ return x != val
+ return inner
+
+
+def equals(val):
+ def inner(x):
+ return x == val
+ return inner
+
+
+def max_neg_value(tensor):
+ return -torch.finfo(tensor.dtype).max
+
+
+# keyword argument helpers
+
+def pick_and_pop(keys, d):
+ values = list(map(lambda key: d.pop(key), keys))
+ return dict(zip(keys, values))
+
+
+def group_dict_by_key(cond, d):
+ return_val = [dict(), dict()]
+ for key in d.keys():
+ match = bool(cond(key))
+ ind = int(not match)
+ return_val[ind][key] = d[key]
+ return (*return_val,)
+
+
+def string_begins_with(prefix, str):
+ return str.startswith(prefix)
+
+
+def group_by_key_prefix(prefix, d):
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
+
+
+def groupby_prefix_and_trim(prefix, d):
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
+ return kwargs_without_prefix, kwargs
+
+
+# classes
+class Scale(nn.Module):
+ def __init__(self, value, fn):
+ super().__init__()
+ self.value = value
+ self.fn = fn
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.value, *rest)
+
+
+class Rezero(nn.Module):
+ def __init__(self, fn):
+ super().__init__()
+ self.fn = fn
+ self.g = nn.Parameter(torch.zeros(1))
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.g, *rest)
+
+
+class ScaleNorm(nn.Module):
+ def __init__(self, dim, eps=1e-5):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(1))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class RMSNorm(nn.Module):
+ def __init__(self, dim, eps=1e-8):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(dim))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class Residual(nn.Module):
+ def forward(self, x, residual):
+ return x + residual
+
+
+class GRUGating(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.gru = nn.GRUCell(dim, dim)
+
+ def forward(self, x, residual):
+ gated_output = self.gru(
+ rearrange(x, 'b n d -> (b n) d'),
+ rearrange(residual, 'b n d -> (b n) d')
+ )
+
+ return gated_output.reshape_as(x)
+
+
+# feedforward
+
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+# attention.
+class Attention(nn.Module):
+ def __init__(
+ self,
+ dim,
+ dim_head=DEFAULT_DIM_HEAD,
+ heads=8,
+ causal=False,
+ mask=None,
+ talking_heads=False,
+ sparse_topk=None,
+ use_entmax15=False,
+ num_mem_kv=0,
+ dropout=0.,
+ on_attn=False
+ ):
+ super().__init__()
+ if use_entmax15:
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.causal = causal
+ self.mask = mask
+
+ inner_dim = dim_head * heads
+
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
+ self.dropout = nn.Dropout(dropout)
+
+ # talking heads
+ self.talking_heads = talking_heads
+ if talking_heads:
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+
+ # explicit topk sparse attention
+ self.sparse_topk = sparse_topk
+
+ # entmax
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
+ self.attn_fn = F.softmax
+
+ # add memory key / values
+ self.num_mem_kv = num_mem_kv
+ if num_mem_kv > 0:
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+
+ # attention on attention
+ self.attn_on_attn = on_attn
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ rel_pos=None,
+ sinusoidal_emb=None,
+ prev_attn=None,
+ mem=None
+ ):
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
+ kv_input = default(context, x)
+
+ q_input = x
+ k_input = kv_input
+ v_input = kv_input
+
+ if exists(mem):
+ k_input = torch.cat((mem, k_input), dim=-2)
+ v_input = torch.cat((mem, v_input), dim=-2)
+
+ if exists(sinusoidal_emb):
+ # in shortformer, the query would start at a position offset depending on the past cached memory
+ offset = k_input.shape[-2] - q_input.shape[-2]
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
+ k_input = k_input + sinusoidal_emb(k_input)
+
+ q = self.to_q(q_input)
+ k = self.to_k(k_input)
+ v = self.to_v(v_input)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
+
+ input_mask = None
+ if any(map(exists, (mask, context_mask))):
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
+ k_mask = q_mask if not exists(context) else context_mask
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
+ input_mask = q_mask * k_mask
+
+ if self.num_mem_kv > 0:
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
+ k = torch.cat((mem_k, k), dim=-2)
+ v = torch.cat((mem_v, v), dim=-2)
+ if exists(input_mask):
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
+
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
+ mask_value = max_neg_value(dots)
+
+ if exists(prev_attn):
+ dots = dots + prev_attn
+
+ pre_softmax_attn = dots
+
+ if talking_heads:
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
+
+ if exists(rel_pos):
+ dots = rel_pos(dots)
+
+ if exists(input_mask):
+ dots.masked_fill_(~input_mask, mask_value)
+ del input_mask
+
+ if self.causal:
+ i, j = dots.shape[-2:]
+ r = torch.arange(i, device=device)
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
+ mask = F.pad(mask, (j - i, 0), value=False)
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
+ mask = dots < vk
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ attn = self.attn_fn(dots, dim=-1)
+ post_softmax_attn = attn
+
+ attn = self.dropout(attn)
+
+ if talking_heads:
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
+
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+
+ intermediates = Intermediates(
+ pre_softmax_attn=pre_softmax_attn,
+ post_softmax_attn=post_softmax_attn
+ )
+
+ return self.to_out(out), intermediates
+
+
+class AttentionLayers(nn.Module):
+ def __init__(
+ self,
+ dim,
+ depth,
+ heads=8,
+ causal=False,
+ cross_attend=False,
+ only_cross=False,
+ use_scalenorm=False,
+ use_rmsnorm=False,
+ use_rezero=False,
+ rel_pos_num_buckets=32,
+ rel_pos_max_distance=128,
+ position_infused_attn=False,
+ custom_layers=None,
+ sandwich_coef=None,
+ par_ratio=None,
+ residual_attn=False,
+ cross_residual_attn=False,
+ macaron=False,
+ pre_norm=True,
+ gate_residual=False,
+ **kwargs
+ ):
+ super().__init__()
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
+
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
+
+ self.dim = dim
+ self.depth = depth
+ self.layers = nn.ModuleList([])
+
+ self.has_pos_emb = position_infused_attn
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
+ self.rotary_pos_emb = always(None)
+
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
+ self.rel_pos = None
+
+ self.pre_norm = pre_norm
+
+ self.residual_attn = residual_attn
+ self.cross_residual_attn = cross_residual_attn
+
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
+ norm_class = RMSNorm if use_rmsnorm else norm_class
+ norm_fn = partial(norm_class, dim)
+
+ norm_fn = nn.Identity if use_rezero else norm_fn
+ branch_fn = Rezero if use_rezero else None
+
+ if cross_attend and not only_cross:
+ default_block = ('a', 'c', 'f')
+ elif cross_attend and only_cross:
+ default_block = ('c', 'f')
+ else:
+ default_block = ('a', 'f')
+
+ if macaron:
+ default_block = ('f',) + default_block
+
+ if exists(custom_layers):
+ layer_types = custom_layers
+ elif exists(par_ratio):
+ par_depth = depth * len(default_block)
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
+ default_block = tuple(filter(not_equals('f'), default_block))
+ par_attn = par_depth // par_ratio
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
+ par_block = default_block + ('f',) * (par_width - len(default_block))
+ par_head = par_block * par_attn
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
+ elif exists(sandwich_coef):
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
+ else:
+ layer_types = default_block * depth
+
+ self.layer_types = layer_types
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
+
+ for layer_type in self.layer_types:
+ if layer_type == 'a':
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
+ elif layer_type == 'c':
+ layer = Attention(dim, heads=heads, **attn_kwargs)
+ elif layer_type == 'f':
+ layer = FeedForward(dim, **ff_kwargs)
+ layer = layer if not macaron else Scale(0.5, layer)
+ else:
+ raise Exception(f'invalid layer type {layer_type}')
+
+ if isinstance(layer, Attention) and exists(branch_fn):
+ layer = branch_fn(layer)
+
+ if gate_residual:
+ residual_fn = GRUGating(dim)
+ else:
+ residual_fn = Residual()
+
+ self.layers.append(nn.ModuleList([
+ norm_fn(),
+ layer,
+ residual_fn
+ ]))
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ mems=None,
+ return_hiddens=False
+ ):
+ hiddens = []
+ intermediates = []
+ prev_attn = None
+ prev_cross_attn = None
+
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
+
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
+ is_last = ind == (len(self.layers) - 1)
+
+ if layer_type == 'a':
+ hiddens.append(x)
+ layer_mem = mems.pop(0)
+
+ residual = x
+
+ if self.pre_norm:
+ x = norm(x)
+
+ if layer_type == 'a':
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
+ prev_attn=prev_attn, mem=layer_mem)
+ elif layer_type == 'c':
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
+ elif layer_type == 'f':
+ out = block(x)
+
+ x = residual_fn(out, residual)
+
+ if layer_type in ('a', 'c'):
+ intermediates.append(inter)
+
+ if layer_type == 'a' and self.residual_attn:
+ prev_attn = inter.pre_softmax_attn
+ elif layer_type == 'c' and self.cross_residual_attn:
+ prev_cross_attn = inter.pre_softmax_attn
+
+ if not self.pre_norm and not is_last:
+ x = norm(x)
+
+ if return_hiddens:
+ intermediates = LayerIntermediates(
+ hiddens=hiddens,
+ attn_intermediates=intermediates
+ )
+
+ return x, intermediates
+
+ return x
+
+
+class Encoder(AttentionLayers):
+ def __init__(self, **kwargs):
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
+ super().__init__(causal=False, **kwargs)
+
+
+
+class TransformerWrapper(nn.Module):
+ def __init__(
+ self,
+ *,
+ num_tokens,
+ max_seq_len,
+ attn_layers,
+ emb_dim=None,
+ max_mem_len=0.,
+ emb_dropout=0.,
+ num_memory_tokens=None,
+ tie_embedding=False,
+ use_pos_emb=True
+ ):
+ super().__init__()
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
+
+ dim = attn_layers.dim
+ emb_dim = default(emb_dim, dim)
+
+ self.max_seq_len = max_seq_len
+ self.max_mem_len = max_mem_len
+ self.num_tokens = num_tokens
+
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
+ self.emb_dropout = nn.Dropout(emb_dropout)
+
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
+ self.attn_layers = attn_layers
+ self.norm = nn.LayerNorm(dim)
+
+ self.init_()
+
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
+
+ # memory tokens (like [cls]) from Memory Transformers paper
+ num_memory_tokens = default(num_memory_tokens, 0)
+ self.num_memory_tokens = num_memory_tokens
+ if num_memory_tokens > 0:
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
+
+ # let funnel encoder know number of memory tokens, if specified
+ if hasattr(attn_layers, 'num_memory_tokens'):
+ attn_layers.num_memory_tokens = num_memory_tokens
+
+ def init_(self):
+ nn.init.normal_(self.token_emb.weight, std=0.02)
+
+ def forward(
+ self,
+ x,
+ return_embeddings=False,
+ mask=None,
+ return_mems=False,
+ return_attn=False,
+ mems=None,
+ **kwargs
+ ):
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
+ x = self.token_emb(x)
+ x += self.pos_emb(x)
+ x = self.emb_dropout(x)
+
+ x = self.project_emb(x)
+
+ if num_mem > 0:
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
+ x = torch.cat((mem, x), dim=1)
+
+ # auto-handle masking after appending memory tokens
+ if exists(mask):
+ mask = F.pad(mask, (num_mem, 0), value=True)
+
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
+ x = self.norm(x)
+
+ mem, x = x[:, :num_mem], x[:, num_mem:]
+
+ out = self.to_logits(x) if not return_embeddings else x
+
+ if return_mems:
+ hiddens = intermediates.hiddens
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
+ return out, new_mems
+
+ if return_attn:
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
+ return out, attn_maps
+
+ return out
+
diff --git a/gligen/ldm/util.py b/gligen/ldm/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..51839cb1478d9fecb293277dc83d2693e3d26de4
--- /dev/null
+++ b/gligen/ldm/util.py
@@ -0,0 +1,86 @@
+import importlib
+
+import torch
+import numpy as np
+
+from inspect import isfunction
+from PIL import Image, ImageDraw, ImageFont
+
+
+def log_txt_as_img(wh, xc, size=10):
+ # wh a tuple of (width, height)
+ # xc a list of captions to plot
+ b = len(xc)
+ txts = list()
+ for bi in range(b):
+ txt = Image.new("RGB", wh, color="white")
+ draw = ImageDraw.Draw(txt)
+ font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
+ nc = int(40 * (wh[0] / 256))
+ lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
+
+ try:
+ draw.text((0, 0), lines, fill="black", font=font)
+ except UnicodeEncodeError:
+ print("Cant encode string for logging. Skipping.")
+
+ txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
+ txts.append(txt)
+ txts = np.stack(txts)
+ txts = torch.tensor(txts)
+ return txts
+
+
+def ismap(x):
+ if not isinstance(x, torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
+
+
+def isimage(x):
+ if not isinstance(x,torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def mean_flat(tensor):
+ """
+ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def count_params(model, verbose=False):
+ total_params = sum(p.numel() for p in model.parameters())
+ if verbose:
+ print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
+ return total_params
+
+
+def instantiate_from_config(config):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
\ No newline at end of file
diff --git a/gligen/task_grounded_generation.py b/gligen/task_grounded_generation.py
new file mode 100644
index 0000000000000000000000000000000000000000..73972acd60289f6f13daf0db920a4daac3707b2a
--- /dev/null
+++ b/gligen/task_grounded_generation.py
@@ -0,0 +1,292 @@
+import argparse
+from PIL import Image, ImageDraw
+from evaluator import Evaluator
+from omegaconf import OmegaConf
+from ldm.models.diffusion.ddim import DDIMSampler
+from ldm.models.diffusion.plms import PLMSSampler
+import os
+from transformers import CLIPProcessor, CLIPModel
+from copy import deepcopy
+import torch
+from ldm.util import instantiate_from_config
+from trainer import read_official_ckpt, batch_to_device
+from evaluator import set_alpha_scale, save_images, draw_masks_from_boxes
+import numpy as np
+import clip
+from functools import partial
+import torchvision.transforms.functional as F
+import random
+
+
+device = "cuda"
+
+
+def alpha_generator(length, type=[1,0,0]):
+ """
+ length is total timestpes needed for sampling.
+ type should be a list containing three values which sum should be 1
+
+ It means the percentage of three stages:
+ alpha=1 stage
+ linear deacy stage
+ alpha=0 stage.
+
+ For example if length=100, type=[0.8,0.1,0.1]
+ then the first 800 stpes, alpha will be 1, and then linearly decay to 0 in the next 100 steps,
+ and the last 100 stpes are 0.
+ """
+
+ assert len(type)==3
+ assert type[0] + type[1] + type[2] == 1
+
+ stage0_length = int(type[0]*length)
+ stage1_length = int(type[1]*length)
+ stage2_length = length - stage0_length - stage1_length
+
+ if stage1_length != 0:
+ decay_alphas = np.arange(start=0, stop=1, step=1/stage1_length)[::-1]
+ decay_alphas = list(decay_alphas)
+ else:
+ decay_alphas = []
+
+
+ alphas = [1]*stage0_length + decay_alphas + [0]*stage2_length
+
+ assert len(alphas) == length
+
+ return alphas
+
+
+def draw_box(img, locations):
+ colors = ["red", "green", "blue", "olive", "orange", "brown", "cyan", "purple"]
+ draw = ImageDraw.Draw(img)
+ WW,HH = img.size
+ for bid, box in enumerate(locations):
+ draw.rectangle([box[0]*WW, box[1]*HH, box[2]*WW, box[3]*HH], outline =colors[bid % len(colors)], width=5)
+ return img
+
+def load_ckpt(config, state_dict):
+ model = instantiate_from_config(config.model).to(device).eval()
+ autoencoder = instantiate_from_config(config.autoencoder).to(device).eval()
+ text_encoder = instantiate_from_config(config.text_encoder).to(device).eval()
+ diffusion = instantiate_from_config(config.diffusion).to(device)
+
+ autoencoder.load_state_dict( state_dict["autoencoder"] )
+ text_encoder.load_state_dict( state_dict["text_encoder"] )
+ diffusion.load_state_dict( state_dict["diffusion"] )
+
+ model.load_state_dict(state_dict['model'])
+ set_alpha_scale(model, config.alpha_scale)
+ print("ckpt is loaded")
+
+ return model, autoencoder, text_encoder, diffusion
+
+
+
+
+def project(x, projection_matrix):
+ """
+ x (Batch*768) should be the penultimate feature of CLIP (before projection)
+ projection_matrix (768*768) is the CLIP projection matrix, which should be weight.data of Linear layer
+ defined in CLIP (out_dim, in_dim), thus we need to apply transpose below.
+ this function will return the CLIP feature (without normalziation)
+ """
+ return x@torch.transpose(projection_matrix, 0, 1)
+
+
+def get_clip_feature(model, processor, input, is_image=False):
+ feature_type = ['before','after_reproject'] # text feature, image feature
+
+ if is_image:
+ image = input #Image.open(input).convert("RGB")
+ inputs = processor(images=[image], return_tensors="pt", padding=True)
+ inputs['pixel_values'] = inputs['pixel_values'].cuda() # we use our own preprocessing without center_crop
+ inputs['input_ids'] = torch.tensor([[0,1,2,3]]).cuda() # placeholder
+ outputs = model(**inputs)
+ feature = outputs.image_embeds
+ if feature_type[1] == 'after_renorm':
+ feature = feature*28.7
+ if feature_type[1] == 'after_reproject':
+ feature = project( feature, torch.load('gligen/projection_matrix').cuda().T ).squeeze(0)
+ feature = ( feature / feature.norm() ) * 28.7
+ feature = feature.unsqueeze(0)
+ else:
+ inputs = processor(text=input, return_tensors="pt", padding=True)
+ inputs['input_ids'] = inputs['input_ids'].cuda()
+ inputs['pixel_values'] = torch.ones(1,3,224,224).cuda() # placeholder
+ inputs['attention_mask'] = inputs['attention_mask'].cuda()
+ outputs = model(**inputs)
+ feature = outputs.text_embeds if feature_type[0] == 'after' else outputs.text_model_output.pooler_output
+ return feature
+
+
+
+def complete_mask(has_mask, max_objs):
+ mask = torch.ones(1,max_objs)
+ if type(has_mask) == int or type(has_mask) == float:
+ return mask * has_mask
+ else:
+ for idx, value in enumerate(has_mask):
+ mask[0,idx] = value
+ return mask
+
+
+
+@torch.no_grad()
+def fire_clip(text_encoder, meta, batch=1, max_objs=30, clip_model=None):
+ phrases = meta["phrases"]
+ images = meta["images"]
+
+ if clip_model is None:
+ version = "openai/clip-vit-large-patch14"
+ model = CLIPModel.from_pretrained(version).cuda()
+ processor = CLIPProcessor.from_pretrained(version)
+ else:
+ version = "openai/clip-vit-large-patch14"
+ assert clip_model['version'] == version
+ model = clip_model['model']
+ processor = clip_model['processor']
+
+ boxes = torch.zeros(max_objs, 4)
+ masks = torch.zeros(max_objs)
+ text_embeddings = torch.zeros(max_objs, 768)
+ image_embeddings = torch.zeros(max_objs, 768)
+
+
+ text_features = []
+ image_features = []
+ for phrase, image in zip(phrases,images):
+ text_features.append( get_clip_feature(model, processor, phrase, is_image=False) )
+ image_features.append( get_clip_feature(model, processor, image, is_image=True) )
+
+ if len(text_features) > 0:
+ text_features = torch.cat(text_features, dim=0)
+ image_features = torch.cat(image_features, dim=0)
+
+ for idx, (box, text_feature, image_feature) in enumerate(zip( meta['locations'], text_features, image_features)):
+ boxes[idx] = torch.tensor(box)
+ masks[idx] = 1
+ text_embeddings[idx] = text_feature
+ image_embeddings[idx] = image_feature
+
+
+ out = {
+ "boxes" : boxes.unsqueeze(0).repeat(batch,1,1),
+ "masks" : masks.unsqueeze(0).repeat(batch,1),
+ "text_masks" : masks.unsqueeze(0).repeat(batch,1)*complete_mask( meta["has_text_mask"], max_objs ),
+ "image_masks" : masks.unsqueeze(0).repeat(batch,1)*complete_mask( meta["has_image_mask"], max_objs ),
+ "text_embeddings" : text_embeddings.unsqueeze(0).repeat(batch,1,1),
+ "image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1)
+ }
+ return batch_to_device(out, device)
+
+
+
+
+
+@torch.no_grad()
+def grounded_generation_box(loaded_model_list, instruction, *args, **kwargs):
+
+ # -------------- prepare model and misc --------------- #
+ model, autoencoder, text_encoder, diffusion = loaded_model_list
+ batch_size = instruction["batch_size"]
+ is_inpaint = True if "input_image" in instruction else False
+ save_folder = os.path.join("create_samples", instruction["save_folder_name"])
+
+
+ # -------------- set seed if required --------------- #
+ if instruction.get('fix_seed', False):
+ random_seed = instruction['rand_seed']
+ random.seed(random_seed)
+ np.random.seed(random_seed)
+ torch.manual_seed(random_seed)
+
+ # ------------- prepare input for the model ------------- #
+ batch = fire_clip(text_encoder, instruction, batch_size, clip_model=kwargs.get('clip_model', None))
+ context = text_encoder.encode( [instruction["prompt"]]*batch_size )
+ uc = text_encoder.encode( batch_size*[""] )
+ # print(batch['boxes'])
+ input = dict(x = None,
+ timesteps = None,
+ context = context,
+ boxes = batch['boxes'],
+ masks = batch['masks'],
+ text_masks = batch['text_masks'],
+ image_masks = batch['image_masks'],
+ text_embeddings = batch["text_embeddings"],
+ image_embeddings = batch["image_embeddings"] )
+
+ inpainting_mask = x0 = None # used for inpainting
+ if is_inpaint:
+ input_image = F.pil_to_tensor( instruction["input_image"] )
+ input_image = ( input_image.float().unsqueeze(0).cuda() / 255 - 0.5 ) / 0.5
+ x0 = autoencoder.encode( input_image )
+ if instruction["actual_mask"] is not None:
+ inpainting_mask = instruction["actual_mask"][None, None].expand(batch['boxes'].shape[0], -1, -1, -1).cuda()
+ else:
+ # inpainting_mask = draw_masks_from_boxes( batch['boxes'], (x0.shape[-2], x0.shape[-1]) ).cuda()
+ actual_boxes = [instruction['inpainting_boxes_nodrop'] for _ in range(batch['boxes'].shape[0])]
+ inpainting_mask = draw_masks_from_boxes(actual_boxes, (x0.shape[-2], x0.shape[-1]) ).cuda()
+ # extra input for the model
+ masked_x0 = x0*inpainting_mask
+ inpainting_extra_input = torch.cat([masked_x0,inpainting_mask], dim=1)
+ input["inpainting_extra_input"] = inpainting_extra_input
+
+
+ # ------------- prepare sampler ------------- #
+ alpha_generator_func = partial(alpha_generator, type=instruction["alpha_type"])
+ if False:
+ sampler = DDIMSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
+ steps = 250
+ else:
+ sampler = PLMSSampler(diffusion, model, alpha_generator_func=alpha_generator_func, set_alpha_scale=set_alpha_scale)
+ steps = 50
+
+ # ------------- run sampler ... ------------- #
+ shape = (batch_size, model.in_channels, model.image_size, model.image_size)
+ samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=instruction['guidance_scale'], mask=inpainting_mask, x0=x0)
+ samples_fake = autoencoder.decode(samples_fake)
+
+
+ # ------------- other logistics ------------- #
+ os.makedirs( os.path.join(save_folder, 'images'), exist_ok=True)
+ os.makedirs( os.path.join(save_folder, 'layout'), exist_ok=True)
+ os.makedirs( os.path.join(save_folder, 'overlay'), exist_ok=True)
+
+ start = len( os.listdir(os.path.join(save_folder, 'images')) )
+ image_ids = list(range(start,start+batch_size))
+ print(image_ids)
+
+ sample_list = []
+ for image_id, sample in zip(image_ids, samples_fake):
+ sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
+ sample = sample.cpu().numpy().transpose(1,2,0) * 255
+ sample = Image.fromarray(sample.astype(np.uint8))
+ sample_list.append(sample)
+
+ return sample_list, None
+
+
+
+# if __name__ == "__main__":
+
+
+# parser = argparse.ArgumentParser()
+# parser.add_argument("--folder", type=str, default="create_samples", help="path to OUTPUT")
+# parser.add_argument("--official_ckpt", type=str, default='../../../data/sd-v1-4.ckpt', help="")
+
+# parser.add_argument("--batch_size", type=int, default=10, help="This will overwrite the one in yaml.")
+# parser.add_argument("--no_plms", action='store_true')
+# parser.add_argument("--guidance_scale", type=float, default=5, help="")
+# parser.add_argument("--alpha_scale", type=float, default=1, help="scale tanh(alpha). If 0, the behaviour is same as original model")
+# args = parser.parse_args()
+
+# assert "sd-v1-4.ckpt" in args.official_ckpt, "only support for stable-diffusion model"
+
+
+# grounded_generation(args)
+
+
+
+
+
diff --git a/gligen/trainer.py b/gligen/trainer.py
new file mode 100644
index 0000000000000000000000000000000000000000..0815b7b25579001be44674e6fa2afa2a7d9e79b0
--- /dev/null
+++ b/gligen/trainer.py
@@ -0,0 +1,456 @@
+import torch
+from ldm.models.diffusion.ddim import DDIMSampler
+from ldm.models.diffusion.plms import PLMSSampler
+from ldm.util import instantiate_from_config
+import numpy as np
+import random
+import time
+from dataset.concat_dataset import ConCatDataset #, collate_fn
+from torch.utils.data.distributed import DistributedSampler
+from torch.utils.data import DataLoader
+from torch.utils.tensorboard import SummaryWriter
+import os
+import shutil
+import torchvision
+import math
+from torch.nn.parallel import DistributedDataParallel as DDP
+from tqdm import tqdm
+from distributed import get_rank, synchronize, get_world_size
+from transformers import get_cosine_schedule_with_warmup, get_constant_schedule_with_warmup
+from copy import deepcopy
+try:
+ from apex import amp
+except:
+ pass
+# = = = = = = = = = = = = = = = = = = useful functions = = = = = = = = = = = = = = = = = #
+
+class ImageCaptionSaver:
+ def __init__(self, base_path, nrow=8, normalize=True, scale_each=True, range=(-1,1) ):
+ self.base_path = base_path
+ self.nrow = nrow
+ self.normalize = normalize
+ self.scale_each = scale_each
+ self.range = range
+
+ def __call__(self, images, real, captions, seen):
+
+ save_path = os.path.join(self.base_path, str(seen).zfill(8)+'.png')
+ torchvision.utils.save_image( images, save_path, nrow=self.nrow, normalize=self.normalize, scale_each=self.scale_each, range=self.range )
+
+ save_path = os.path.join(self.base_path, str(seen).zfill(8)+'_real.png')
+ torchvision.utils.save_image( real, save_path, nrow=self.nrow)
+
+ assert images.shape[0] == len(captions)
+
+ save_path = os.path.join(self.base_path, 'captions.txt')
+ with open(save_path, "a") as f:
+ f.write( str(seen).zfill(8) + ':\n' )
+ for cap in captions:
+ f.write( cap + '\n' )
+ f.write( '\n' )
+
+
+
+def read_official_ckpt(ckpt_path):
+ "Read offical pretrained ckpt and convert into my style"
+ state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
+ out = {}
+ out["model"] = {}
+ out["text_encoder"] = {}
+ out["autoencoder"] = {}
+ out["unexpected"] = {}
+ out["diffusion"] = {}
+
+ for k,v in state_dict.items():
+ if k.startswith('model.diffusion_model'):
+ out["model"][k.replace("model.diffusion_model.", "")] = v
+ elif k.startswith('cond_stage_model'):
+ out["text_encoder"][k.replace("cond_stage_model.", "")] = v
+ elif k.startswith('first_stage_model'):
+ out["autoencoder"][k.replace("first_stage_model.", "")] = v
+ elif k in ["model_ema.decay", "model_ema.num_updates"]:
+ out["unexpected"][k] = v
+ else:
+ out["diffusion"][k] = v
+ return out
+
+
+def batch_to_device(batch, device):
+ for k in batch:
+ if isinstance(batch[k], torch.Tensor):
+ batch[k] = batch[k].to(device)
+ return batch
+
+
+def sub_batch(batch, num=1):
+ # choose first num in given batch
+ num = num if num > 1 else 1
+ for k in batch:
+ batch[k] = batch[k][0:num]
+ return batch
+
+
+def wrap_loader(loader):
+ while True:
+ for batch in loader: # TODO: it seems each time you have the same order for all epoch??
+ yield batch
+
+
+def disable_grads(model):
+ for p in model.parameters():
+ p.requires_grad = False
+
+
+def count_params(params):
+ total_trainable_params_count = 0
+ for p in params:
+ total_trainable_params_count += p.numel()
+ print("total_trainable_params_count is: ", total_trainable_params_count)
+
+
+def update_ema(target_params, source_params, rate=0.99):
+ for targ, src in zip(target_params, source_params):
+ targ.detach().mul_(rate).add_(src, alpha=1 - rate)
+
+
+def create_expt_folder_with_auto_resuming(OUTPUT_ROOT, name):
+ #curr_folder_name = os.getcwd().split("/")[-1]
+ name = os.path.join( OUTPUT_ROOT, name )
+ writer = None
+ checkpoint = None
+
+ if os.path.exists(name):
+ all_tags = os.listdir(name)
+ all_existing_tags = [ tag for tag in all_tags if tag.startswith('tag') ]
+ all_existing_tags.sort()
+ all_existing_tags = all_existing_tags[::-1]
+ for previous_tag in all_existing_tags:
+ potential_ckpt = os.path.join( name, previous_tag, 'checkpoint_latest.pth' )
+ if os.path.exists(potential_ckpt):
+ checkpoint = potential_ckpt
+ if get_rank() == 0:
+ print('ckpt found '+ potential_ckpt)
+ break
+ curr_tag = 'tag'+str(len(all_existing_tags)).zfill(2)
+ name = os.path.join( name, curr_tag ) # output/name/tagxx
+ else:
+ name = os.path.join( name, 'tag00' ) # output/name/tag00
+
+ if get_rank() == 0:
+ os.makedirs(name)
+ os.makedirs( os.path.join(name,'Log') )
+ writer = SummaryWriter( os.path.join(name,'Log') )
+
+ return name, writer, checkpoint
+
+
+
+# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
+# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
+# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
+
+
+
+
+
+
+class Trainer:
+ def __init__(self, config):
+
+ self.config = config
+ self.device = torch.device("cuda")
+
+ self.l_simple_weight = 1
+ self.name, self.writer, checkpoint = create_expt_folder_with_auto_resuming(config.OUTPUT_ROOT, config.name)
+ if get_rank() == 0:
+ shutil.copyfile(config.yaml_file, os.path.join(self.name, "train_config_file.yaml") )
+ torch.save( vars(config), os.path.join(self.name, "config_dict.pth") )
+
+ # = = = = = = = = = = create model and diffusion = = = = = = = = = = #
+ self.model = instantiate_from_config(config.model).to(self.device)
+ self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
+ self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
+ self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
+
+
+ state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
+ missing_keys, unexpected_keys = self.model.load_state_dict( state_dict["model"], strict=False )
+ assert unexpected_keys == []
+ original_params_names = list( state_dict["model"].keys() )
+ self.autoencoder.load_state_dict( state_dict["autoencoder"] )
+ self.text_encoder.load_state_dict( state_dict["text_encoder"] )
+ self.diffusion.load_state_dict( state_dict["diffusion"] )
+
+ self.autoencoder.eval()
+ self.text_encoder.eval()
+ disable_grads(self.autoencoder)
+ disable_grads(self.text_encoder)
+
+
+
+ # = = load from ckpt: (usually second stage whole model finetune) = = #
+ if self.config.ckpt is not None:
+ first_stage_ckpt = torch.load(self.config.ckpt, map_location="cpu")
+ self.model.load_state_dict(first_stage_ckpt["model"])
+
+
+
+
+ # = = = = = = = = = = create opt = = = = = = = = = = #
+ print(" ")
+ print("IMPORTANT: following code decides which params trainable!")
+ print(" ")
+
+ if self.config.whole:
+ print("Entire model is trainable")
+ params = list(self.model.parameters())
+ else:
+ print("Only new added components will be updated")
+ params = []
+ trainable_names = []
+ for name, p in self.model.named_parameters():
+ if ("transformer_blocks" in name) and ("fuser" in name):
+ params.append(p)
+ trainable_names.append(name)
+ elif "position_net" in name:
+ params.append(p)
+ trainable_names.append(name)
+ else:
+ # all new added trainable params have to be haddled above
+ # otherwise it will trigger the following error
+ assert name in original_params_names, name
+
+ all_params_name = list( self.model.state_dict().keys() )
+ assert set(all_params_name) == set(trainable_names + original_params_names)
+
+ self.opt = torch.optim.AdamW(params, lr=config.base_learning_rate, weight_decay=config.weight_decay)
+ count_params(params)
+
+ self.master_params = list(self.model.parameters()) # note: you cannot assign above params as master_params since that is only trainable one
+
+ if config.enable_ema:
+ self.ema = deepcopy(self.model)
+ self.ema_params = list(self.ema.parameters())
+ self.ema.eval()
+
+ # = = = = = = = = = = create scheduler = = = = = = = = = = #
+ if config.scheduler_type == "cosine":
+ self.scheduler = get_cosine_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps, num_training_steps=config.total_iters)
+ elif config.scheduler_type == "constant":
+ self.scheduler = get_constant_schedule_with_warmup(self.opt, num_warmup_steps=config.warmup_steps)
+ else:
+ assert False
+
+
+
+ # = = = = = = = = = = create data = = = = = = = = = = #
+ train_dataset_repeats = config.train_dataset_repeats if 'train_dataset_repeats' in config else None
+ dataset_train = ConCatDataset(config.train_dataset_names, config.DATA_ROOT, config.which_embedder, train=True, repeats=train_dataset_repeats)
+ sampler = DistributedSampler(dataset_train) if config.distributed else None
+ loader_train = DataLoader( dataset_train, batch_size=config.batch_size,
+ shuffle=(sampler is None),
+ num_workers=config.workers,
+ pin_memory=True,
+ sampler=sampler)
+ self.dataset_train = dataset_train
+ self.loader_train = wrap_loader(loader_train)
+
+ if get_rank() == 0:
+ total_image = dataset_train.total_images()
+ print("Total training images: ", total_image)
+
+
+ # = = = = = = = = = = load from autoresuming ckpt = = = = = = = = = = #
+ self.starting_iter = 0
+ if checkpoint is not None:
+ checkpoint = torch.load(checkpoint, map_location="cpu")
+ self.model.load_state_dict(checkpoint["model"])
+ if config.enable_ema:
+ self.ema.load_state_dict(checkpoint["ema"])
+ self.opt.load_state_dict(checkpoint["opt"])
+ self.scheduler.load_state_dict(checkpoint["scheduler"])
+ self.starting_iter = checkpoint["iters"]
+ if self.starting_iter >= config.total_iters:
+ synchronize()
+ print("Training finished. Start exiting")
+ exit()
+
+
+ # = = = = = misc = = = = = #
+ if get_rank() == 0:
+ print("Actual total need see images is: ", config.total_iters*config.total_batch_size)
+ print("Equivalent training epoch is: ", (config.total_iters*config.total_batch_size) / len(dataset_train) )
+ self.image_caption_saver = ImageCaptionSaver(self.name)
+ # self.counter = Counter(config.total_batch_size, config.save_every_images)
+
+ if config.use_o2:
+ self.model, self.opt = amp.initialize(self.model, self.opt, opt_level="O2")
+ self.model.use_o2 = True
+
+
+ # = = = = = wrap into ddp = = = = = #
+ if config.distributed:
+ self.model = DDP( self.model, device_ids=[config.local_rank], output_device=config.local_rank, broadcast_buffers=False )
+
+
+
+
+
+ @torch.no_grad()
+ def get_input(self, batch):
+
+ z = self.autoencoder.encode( batch["image"] )
+
+ context = self.text_encoder.encode( batch["caption"] )
+
+ _t = torch.rand(z.shape[0]).to(z.device)
+ t = (torch.pow(_t, self.config.resample_step_gamma) * 1000).long()
+ t = torch.where(t!=1000, t, 999) # if 1000, then replace it with 999
+
+ return z, t, context
+
+
+ def run_one_step(self, batch):
+ x_start, t, context = self.get_input(batch)
+ noise = torch.randn_like(x_start)
+ x_noisy = self.diffusion.q_sample(x_start=x_start, t=t, noise=noise)
+
+ input = dict(x = x_noisy,
+ timesteps = t,
+ context = context,
+ boxes = batch['boxes'],
+ masks = batch['masks'],
+ text_masks = batch['text_masks'],
+ image_masks = batch['image_masks'],
+ text_embeddings = batch["text_embeddings"],
+ image_embeddings = batch["image_embeddings"] )
+ model_output = self.model(input)
+
+ loss = torch.nn.functional.mse_loss(model_output, noise) * self.l_simple_weight
+
+ self.loss_dict = {"loss": loss.item()}
+
+ return loss
+
+
+
+ def start_training(self):
+
+ if not self.config.use_o2:
+ # use pytorch mixed training which is similar to o1 but faster
+ scaler = torch.cuda.amp.GradScaler()
+
+
+ iterator = tqdm(range(self.starting_iter, self.config.total_iters), desc='Training progress', disable=get_rank() != 0 )
+ self.model.train()
+ for iter_idx in iterator: # note: iter_idx is not from 0 if resume training
+ self.iter_idx = iter_idx
+
+ self.opt.zero_grad()
+ batch = next(self.loader_train)
+ batch_to_device(batch, self.device)
+
+ if self.config.use_o2:
+ loss = self.run_one_step(batch)
+ with amp.scale_loss(loss, self.opt) as scaled_loss:
+ scaled_loss.backward()
+ self.opt.step()
+ else:
+ enabled = True if self.config.use_mixed else False
+ with torch.cuda.amp.autocast(enabled=enabled): # with torch.autocast(enabled=True):
+ loss = self.run_one_step(batch)
+ scaler.scale(loss).backward()
+ scaler.step(self.opt)
+ scaler.update()
+
+
+ self.scheduler.step()
+
+ if self.config.enable_ema:
+ update_ema(self.ema_params, self.master_params, self.config.ema_rate)
+
+
+ if (get_rank() == 0):
+ if (iter_idx % 10 == 0):
+ self.log_loss()
+ if (iter_idx == 0) or ( iter_idx % self.config.save_every_iters == 0 ) or (iter_idx == self.config.total_iters-1):
+ self.save_ckpt_and_result()
+ synchronize()
+
+
+ synchronize()
+ print("Training finished. Start exiting")
+ exit()
+
+
+ def log_loss(self):
+ for k, v in self.loss_dict.items():
+ self.writer.add_scalar( k, v, self.iter_idx+1 ) # we add 1 as the actual name
+
+
+ @torch.no_grad()
+ def save_ckpt_and_result(self):
+
+ model_wo_wrapper = self.model.module if self.config.distributed else self.model
+
+ iter_name = self.iter_idx + 1 # we add 1 as the actual name
+
+ if not self.config.disable_inference_in_training:
+ # Do a quick inference on one training batch
+ batch_here = self.config.batch_size
+ batch = sub_batch( next(self.loader_train), batch_here)
+ batch_to_device(batch, self.device)
+
+
+ real_images_with_box_drawing = [] # we save this durining trianing for better visualization
+ for i in range(batch_here):
+ temp_data = {"image": batch["image"][i], "boxes":batch["boxes"][i]}
+ im = self.dataset_train.datasets[0].vis_getitem_data(out=temp_data, return_tensor=True, print_caption=False)
+ real_images_with_box_drawing.append(im)
+ real_images_with_box_drawing = torch.stack(real_images_with_box_drawing)
+
+
+ uc = self.text_encoder.encode( batch_here*[""] )
+ context = self.text_encoder.encode( batch["caption"] )
+
+ ddim_sampler = PLMSSampler(self.diffusion, model_wo_wrapper)
+ shape = (batch_here, model_wo_wrapper.in_channels, model_wo_wrapper.image_size, model_wo_wrapper.image_size)
+ input = dict( x = None,
+ timesteps = None,
+ context = context,
+ boxes = batch['boxes'],
+ masks = batch['masks'],
+ text_masks = batch['text_masks'],
+ image_masks = batch['image_masks'],
+ text_embeddings = batch["text_embeddings"],
+ image_embeddings = batch["image_embeddings"] )
+ samples = ddim_sampler.sample(S=50, shape=shape, input=input, uc=uc, guidance_scale=5)
+
+ # old
+ # autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that.
+ # autoencoder_wo_wrapper = autoencoder_wo_wrapper.cpu() # To save GPU
+ # samples = autoencoder_wo_wrapper.decode(samples.cpu())
+ # autoencoder_wo_wrapper = autoencoder_wo_wrapper.to(self.device)
+
+ # new
+ autoencoder_wo_wrapper = self.autoencoder # Note itself is without wrapper since we do not train that.
+ samples = autoencoder_wo_wrapper.decode(samples).cpu()
+
+ self.image_caption_saver(samples, real_images_with_box_drawing, batch["caption"], iter_name)
+
+ ckpt = dict(model = model_wo_wrapper.state_dict(),
+ opt = self.opt.state_dict(),
+ scheduler= self.scheduler.state_dict(),
+ iters = self.iter_idx+1 )
+ if self.config.enable_ema:
+ ckpt["ema"] = self.ema.state_dict()
+ torch.save( ckpt, os.path.join(self.name, "checkpoint_"+str(iter_name).zfill(8)+".pth") )
+ torch.save( ckpt, os.path.join(self.name, "checkpoint_latest.pth") )
+
+
+
+
+
+
+
+
diff --git a/images/arg_corgis.jpeg b/images/arg_corgis.jpeg
new file mode 100644
index 0000000000000000000000000000000000000000..04ab99bf419862226b30d64c048781ff4ba07362
Binary files /dev/null and b/images/arg_corgis.jpeg differ
diff --git a/images/blank.png b/images/blank.png
new file mode 100644
index 0000000000000000000000000000000000000000..e30ec31e4e12b52e579dcf606826e8d21cb19a03
Binary files /dev/null and b/images/blank.png differ
diff --git a/images/flower_beach.jpg b/images/flower_beach.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..413e0324fbddea3664976ba143b69d44c232b982
Binary files /dev/null and b/images/flower_beach.jpg differ
diff --git a/images/red_bird.jpg b/images/red_bird.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..83e40c08dab493698f15015dd51ed711695dd956
Binary files /dev/null and b/images/red_bird.jpg differ
diff --git a/images/style_cloudpurple.png b/images/style_cloudpurple.png
new file mode 100644
index 0000000000000000000000000000000000000000..8388ad8e38588e3811410222a53b1a45e3ac65f5
Binary files /dev/null and b/images/style_cloudpurple.png differ
diff --git a/images/style_gold.png b/images/style_gold.png
new file mode 100644
index 0000000000000000000000000000000000000000..9484c23df501c33d333babc27c5ef25ac49cf95b
Binary files /dev/null and b/images/style_gold.png differ
diff --git a/images/teddy.jpg b/images/teddy.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..ee5469f2d28ddf9ea8da5fdbbf4b3f7d9c272c59
Binary files /dev/null and b/images/teddy.jpg differ
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..599bad49e532cc1bb0514a59f068fc080c6ef4f7
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,18 @@
+torch==1.13.1
+torchvision==0.14.1
+xformers==0.0.16
+omegaconf==2.1.1
+albumentations==1.3.0
+opencv-python
+imageio==2.9.0
+imageio-ffmpeg==0.4.2
+pytorch-lightning==1.4.2
+test-tube>=0.7.5
+streamlit==1.12.1
+einops==0.3.0
+git+https://github.com/openai/CLIP.git
+protobuf~=3.20.1
+torchmetrics==0.6.0
+transformers==4.19.2
+kornia==0.6.0
+gradio==3.16.0
\ No newline at end of file