import streamlit as st import os import requests from dotenv import load_dotenv # Only needed if using a .env file # Langchain and HuggingFace from langchain.vectorstores import Chroma from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_groq import ChatGroq from langchain.chains import RetrievalQA # Load the .env file (if using it) load_dotenv() groq_api_key = os.getenv("GROQ_API_KEY") # Load embeddings, model, and vector store @st.cache_resource # Singleton, prevent multiple initializations def init_chain(): model_kwargs = {'trust_remote_code': True} embedding = HuggingFaceEmbeddings(model_name='nomic-ai/nomic-embed-text-v1.5', model_kwargs=model_kwargs) llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192", temperature=0.2) vectordb = Chroma(persist_directory='updated_CSPCDB2', embedding_function=embedding) # Create chain chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=vectordb.as_retriever(k=5), return_source_documents=True) return chain # Streamlit app layout st.set_page_config( page_title="CSPC Citizens Charter Conversational Agent", page_icon="cspclogo.png" ) with st.sidebar: st.title('CSPCean Conversational Agent') st.subheader('Ask anything CSPC Related here!') st.markdown('''**About CSPC:** History, Core Values, Mission and Vision''') st.markdown('''**Admission & Graduation:** Apply, Requirements, Process, Graduation''') st.markdown('''**Student Services:** Scholarships, Orgs, Facilities''') st.markdown('''**Academics:** Degrees, Courses, Faculty''') st.markdown('''**Officials:** President, VPs, Deans, Admin''') st.markdown(''' Access the resources here: - [CSPC Citizen’s Charter](https://cspc.edu.ph/governance/citizens-charter/) - [About CSPC](https://cspc.edu.ph/about/) - [College Officials](https://cspc.edu.ph/college-officials/) ''') st.markdown('Team XceptionNet') # Store LLM generated responses if "messages" not in st.session_state: st.session_state.chain = init_chain() st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}] # Function for generating response using the last three conversations def generate_response(prompt_input): # Initialize result result = '' # Prepare conversation history: get the last 3 user and assistant messages conversation_history = "" recent_messages = st.session_state.messages[-3:] # Last 3 user and assistant exchanges (each exchange is 2 messages) for message in recent_messages: conversation_history += f"{message['role']}: {message['content']}\n" # Append the current user prompt to the conversation history conversation_history += f"user: {prompt_input}\n" # Invoke chain with the truncated conversation history res = st.session_state.chain.invoke(conversation_history) # Process response (as in the original code) if res['result'].startswith('According to the provided context, '): res['result'] = res['result'][35:] res['result'] = res['result'][0].upper() + res['result'][1:] elif res['result'].startswith('Based on the provided context, '): res['result'] = res['result'][31:] res['result'] = res['result'][0].upper() + res['result'][1:] elif res['result'].startswith('According to the provided text, '): res['result'] = res['result'][34:] res['result'] = res['result'][0].upper() + res['result'][1:] elif res['result'].startswith('According to the context, '): res['result'] = res['result'][26:] res['result'] = res['result'][0].upper() + res['result'][1:] # result += res['result'] # # Process sources # result += '\n\nSources: ' # sources = [] # for source in res["source_documents"]: # sources.append(source.metadata['source'][122:-4]) # Adjust as per your source format # sources = list(set(sources)) # Remove duplicates # source_list = ", ".join(sources) # result += source_list # return result, res['result'], source_list # return result, res['result'] return res['result'] # Display chat messages for message in st.session_state.messages: with st.chat_message(message["role"]): st.write(message["content"]) # User-provided prompt for input box if prompt := st.chat_input(placeholder="Ask a question..."): # Append user query to session state st.session_state.messages.append({"role": "user", "content": prompt}) with st.chat_message("user"): st.write(prompt) # Generate and display placeholder for assistant response with st.chat_message("assistant"): message_placeholder = st.empty() # Placeholder for response while it's being generated with st.spinner("Generating response..."): # Use conversation history when generating response response = generate_response(prompt) message_placeholder.markdown(response) # Replace placeholder with actual response st.session_state.messages.append({"role": "assistant", "content": response}) # Clear chat history function def clear_chat_history(): # Clear chat messages (reset the assistant greeting) st.session_state.messages = [{"role": "assistant", "content": "How may I help you today?"}] # Reinitialize the chain to clear any stored history (ensures it forgets previous user inputs) st.session_state.chain = init_chain() # Clear any additional session state that might be remembering user inquiries if "recent_user_messages" in st.session_state: del st.session_state["recent_user_messages"] # Clear remembered user inputs st.sidebar.button('Clear Chat History', on_click=clear_chat_history)