import gradio as gr
from gradio_client import Client
import os
import numpy as np
import random
hf_token = os.environ.get("HF_TKN")
MAX_SEED = np.iinfo(np.int32).max
def get_caption(image_in):
client = Client("https://fffiloni-moondream1.hf.space/", hf_token=hf_token)
result = client.predict(
image_in, # filepath in 'image' Image component
"Describe the image", # str in 'Question' Textbox component
api_name="/predict"
)
print(result)
return result
def get_lcm(prompt):
client = Client("https://latent-consistency-lcm-lora-for-sdxl.hf.space/")
result = client.predict(
prompt, # str in 'parameter_5' Textbox component
0.3, # float (numeric value between 0.0 and 5) in 'Guidance' Slider component
8, # float (numeric value between 2 and 10) in 'Steps' Slider component
0, # float (numeric value between 0 and 12013012031030) in 'Seed' Slider component
True, # bool in 'Randomize' Checkbox component
api_name="/predict"
)
print(result)
return result[0]
def get_sdxl_lightning(prompt):
client = Client("AP123/SDXL-Lightning")
result = client.predict(
prompt, # str in 'parameter_1' Textbox component
"4-Step",
api_name="/generate_image"
)
print(result)
return result
def get_turbo(prompt):
seed = random.randint(0, MAX_SEED)
print(f"SEED: {seed}")
client = Client("https://diffusers-unofficial-sdxl-turbo-i2i-t2i.hf.space/")
result = client.predict(
None, # filepath in 'Webcam' Image component
prompt, # str in 'parameter_5' Textbox component
0.7, # float (numeric value between 0.0 and 1.0) in 'Strength' Slider component
4, # float (numeric value between 1 and 10) in 'Steps' Slider component
seed, # float (numeric value between 0 and MAX_SEED) in 'Seed' Slider component
api_name="/predict"
)
print(result)
return result
def infer(image_in, chosen_method):
caption = get_caption(image_in)
if chosen_method == "LCM" :
img_var = get_lcm(caption)
elif chosen_method == "SDXL Lightning" :
img_var = get_sdxl_lightning(caption)
elif chosen_method == "SDXL Turbo" :
img_var = get_turbo(caption)
return img_var
gr.Interface(
title = "Supa Fast Image Variation",
description = "Get quick image variation from image input, using moondream1 for caption, and LCM SDXL, SDXL Lightning or SDXL Turbo for image generation",
fn = infer,
inputs = [
gr.Image(type="filepath", label="Image input"),
gr.Dropdown(label="Choose a model", choices=["LCM", "SDXL Lightning", "SDXL Turbo"], value="SDXL Lightning")
],
outputs = [
gr.Image(label="Image variation")
],
examples = [
["examples/frog_clean.jpg", "LCM"],
["examples/martin_pecheur.jpeg", "SDXL Turbo"],
["examples/forest_deer.png", "SDXL Lightning"]
],
cache_examples = False,
concurrency_limit = 2
).queue(max_size=25).launch(show_api=False, show_error=True)