import os os.system('git clone https://github.com/pytorch/fairseq.git; cd fairseq;' 'pip install --use-feature=in-tree-build ./; cd ..') os.system('ls -l') import torch import numpy as np from fairseq import utils, tasks from fairseq import checkpoint_utils from utils.eval_utils import eval_step from tasks.mm_tasks.refcoco import RefcocoTask from models.ofa import OFAModel from PIL import Image from torchvision import transforms import cv2 import gradio as gr # Register refcoco task tasks.register_task('refcoco', RefcocoTask) # turn on cuda if GPU is available use_cuda = torch.cuda.is_available() # use fp16 only when GPU is available use_fp16 = False os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/refcocog_large_best.pt; ' 'mkdir -p checkpoints; mv refcocog_large_best.pt checkpoints/refcocog.pt') # Load pretrained ckpt & config overrides = {"bpe_dir": "utils/BPE", "eval_cider": False, "beam": 5, "max_len_b": 16, "no_repeat_ngram_size": 3, "seed": 7} models, cfg, task = checkpoint_utils.load_model_ensemble_and_task( utils.split_paths('checkpoints/refcocog.pt'), arg_overrides=overrides ) cfg.common.seed = 7 cfg.generation.beam = 5 cfg.generation.min_len = 4 cfg.generation.max_len_a = 0 cfg.generation.max_len_b = 4 cfg.generation.no_repeat_ngram_size = 3 # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) # Move models to GPU for model in models: model.eval() if use_fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Initialize generator generator = task.build_generator(models, cfg.generation) mean = [0.5, 0.5, 0.5] std = [0.5, 0.5, 0.5] patch_resize_transform = transforms.Compose([ lambda image: image.convert("RGB"), transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ]) # Text preprocess bos_item = torch.LongTensor([task.src_dict.bos()]) eos_item = torch.LongTensor([task.src_dict.eos()]) pad_idx = task.src_dict.pad() def encode_text(text, length=None, append_bos=False, append_eos=False): s = task.tgt_dict.encode_line( line=task.bpe.encode(text), add_if_not_exist=False, append_eos=False ).long() if length is not None: s = s[:length] if append_bos: s = torch.cat([bos_item, s]) if append_eos: s = torch.cat([s, eos_item]) return s patch_image_size = cfg.task.patch_image_size def construct_sample(image: Image, text: str): w, h = image.size w_resize_ratio = torch.tensor(patch_image_size / w).unsqueeze(0) h_resize_ratio = torch.tensor(patch_image_size / h).unsqueeze(0) patch_image = patch_resize_transform(image).unsqueeze(0) patch_mask = torch.tensor([True]) src_text = encode_text(' which region does the text " {} " describe?'.format(text), append_bos=True, append_eos=True).unsqueeze(0) src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text]) sample = { "id": np.array(['42']), "net_input": { "src_tokens": src_text, "src_lengths": src_length, "patch_images": patch_image, "patch_masks": patch_mask, }, "w_resize_ratios": w_resize_ratio, "h_resize_ratios": h_resize_ratio, "region_coords": torch.randn(1, 4) } return sample # Function to turn FP32 to FP16 def apply_half(t): if t.dtype is torch.float32: return t.to(dtype=torch.half) return t # Function for visual grounding def visual_grounding(Image, Text): sample = construct_sample(Image, Text.lower()) sample = utils.move_to_cuda(sample) if use_cuda else sample sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample with torch.no_grad(): result, scores = eval_step(task, generator, models, sample) img = np.asarray(Image) cv2.rectangle( img, (int(result[0]["box"][0]), int(result[0]["box"][1])), (int(result[0]["box"][2]), int(result[0]["box"][3])), (0, 255, 0), 3 ) return img title = "OFA-Visual_Grounding" description = "Gradio Demo for OFA-Visual_Grounding. Upload your own image or click any one of the examples, " \ "and write a description about a certain object. " \ "Then click \"Submit\" and wait for the result of grounding. " article = "

OFA Github " \ "Repo

" examples = [['pokemons.jpg', 'a blue turtle-like pokemon with round head'], ['one_piece.jpeg', 'a man in a straw hat and a red dress'], ['flowers.jpg', 'a white vase and pink flowers']] io = gr.Interface(fn=visual_grounding, inputs=[gr.inputs.Image(type='pil'), "textbox"], outputs=gr.outputs.Image(type='numpy'), title=title, description=description, article=article, examples=examples, allow_flagging=False, allow_screenshot=False) io.launch(enable_queue=True, cache_examples=True)