import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt import torchvision.transforms as transforms from PIL import Image from tqdm import tqdm import gradio as gr model = torch.hub.load('pytorch/vision:v0.10.0', 'vgg19', pretrained=True) feature_layers = [0,5,10,19,28] class StyleTransfer(nn.Module): def __init__(self): super().__init__() self.model = model self.feature_layers = feature_layers self.avg_pool = nn.AvgPool2d(kernel_size=2,stride=2,padding=0,ceil_mode=False) def forward(self,x): style_features = [] for i,layer in enumerate(self.model.features[:29]): if isinstance(layer,nn.MaxPool2d): x = self.avg_pool(x) continue x = layer(x) if i in self.feature_layers: style_features.append(x) if i == 23: content_features = x return style_features,content_features device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def image_merger(content, style,beta=10,device=device): size = 300 alpha = 1 beta *= 1000 content = Image.fromarray(content) style = Image.fromarray(style) t = transforms.Compose( [ transforms.Resize((size,size)), transforms.ToTensor(), ] ) style = t(style).unsqueeze(0).to(device) content = t(content).unsqueeze(0).to(device) generated = content.clone().to(device).requires_grad_(True) generator = StyleTransfer().to(device).eval() opt = torch.optim.Adam([generated],lr=0.06) scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=5, gamma=0.9) # Learning rate scheduler num_epochs = 30 if device != "cuda" else 100 style_features,_ = generator(style) _,content_features = generator(content) loop = tqdm(range(num_epochs),leave=False) for i in loop: content_loss = 0 style_loss = 0 generated_style_features,generated_content_features = generator(generated) content_loss = 0.5 * torch.mean((content_features - generated_content_features) ** 2) for style_feature,generated_style_feature in zip(style_features,generated_style_features): b,c,h,w = style_feature.shape s1 = style_feature.view(c,h*w) @ style_feature.view(c,h*w).T s2 = generated_style_feature.view(c,h*w) @ generated_style_feature.view(c,h*w).T layer_style_loss = torch.mean((s2 - s1)**2)/(4 *(c) * (h*w)) style_loss += layer_style_loss total_loss = alpha * content_loss + beta * style_loss loop.set_postfix(loss=total_loss.item()) opt.zero_grad() total_loss.backward(retain_graph=True) opt.step() scheduler.step() if total_loss < 500 and device!='cuda': break print(total_loss.item()) img = np.array(generated.cpu().detach().squeeze(0).permute(1,2,0)) img = np.clip(img,0,1) * 255 img = Image.fromarray(img.astype(np.uint8)) return img iface = gr.Interface( fn=image_merger, inputs=[ gr.Image(label="Input Image"), gr.Image(label="Style Image"), gr.Slider(label="Style strength", minimum=10, maximum=100, step=10), ], outputs=gr.Image(label="Generated Image"), title="Neural Style Transfer", description="Upload your desired input image and style image. Adjust the 'Style strength' slider to control the intensity of the style transfer. The generated image will showcase your input content with the stylistic elements of the chosen style image. Generation can take upto two minutes", ) iface.launch()