import timm from PIL import Image from torchvision import transforms as T import gradio as gr import torch model = timm.create_model("hf_hub:OmAlve/swin_s3_base_224-Foods-101", pretrained=True) image_size = (224,224) test_tf = T.Compose([ T.Resize(image_size), T.ToTensor(), T.Normalize( mean = (0.5,0.5,0.5), std = (0.5,0.5,0.5) ) ]) labels = [ "apple_pie", "baby_back_ribs", "baklava", "beef_carpaccio", "beef_tartare", "beet_salad", "beignets", "bibimbap", "bread_pudding", "breakfast_burrito", "bruschetta", "caesar_salad", "cannoli", "caprese_salad", "carrot_cake", "ceviche", "cheesecake", "cheese_plate", "chicken_curry", "chicken_quesadilla", "chicken_wings", "chocolate_cake", "chocolate_mousse", "churros", "clam_chowder", "club_sandwich", "crab_cakes", "creme_brulee", "croque_madame", "cup_cakes", "deviled_eggs", "donuts", "dumplings", "edamame", "eggs_benedict", "escargots", "falafel", "filet_mignon", "fish_and_chips", "foie_gras", "french_fries", "french_onion_soup", "french_toast", "fried_calamari", "fried_rice", "frozen_yogurt", "garlic_bread", "gnocchi", "greek_salad", "grilled_cheese_sandwich", "grilled_salmon", "guacamole", "gyoza", "hamburger", "hot_and_sour_soup", "hot_dog", "huevos_rancheros", "hummus", "ice_cream", "lasagna", "lobster_bisque", "lobster_roll_sandwich", "macaroni_and_cheese", "macarons", "miso_soup", "mussels", "nachos", "omelette", "onion_rings", "oysters", "pad_thai", "paella", "pancakes", "panna_cotta", "peking_duck", "pho", "pizza", "pork_chop", "poutine", "prime_rib", "pulled_pork_sandwich", "ramen", "ravioli", "red_velvet_cake", "risotto", "samosa", "sashimi", "scallops", "seaweed_salad", "shrimp_and_grits", "spaghetti_bolognese", "spaghetti_carbonara", "spring_rolls", "steak", "strawberry_shortcake", "sushi", "tacos", "takoyaki", "tiramisu", "tuna_tartare", "waffles" ] def predict(img): inp = test_tf(img).unsqueeze(0) with torch.no_grad(): predictions = torch.nn.functional.softmax(model(inp)[0], dim=0) toplabels = predictions.argsort(descending=True)[:5] results = {labels[label] : float(predictions[label]) for label in toplabels} return results gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="label", examples=['./miso soup.jpg','./cupcake.jpg','./pasta.jpg'], live=True).launch()