import os import re from num2words import num2words import gradio as gr import torch import torchaudio from data.tokenizer import ( AudioTokenizer, TextTokenizer, ) from edit_utils_zh import parse_edit_zh from edit_utils_en import parse_edit_en from edit_utils_zh import parse_tts_zh from edit_utils_en import parse_tts_en from inference_scale import inference_one_sample import librosa import soundfile as sf from models import ssr import io import numpy as np import random import uuid import opencc import spaces import nltk nltk.download('punkt') DEMO_PATH = os.getenv("DEMO_PATH", "./demo") TMP_PATH = os.getenv("TMP_PATH", "./demo/temp") MODELS_PATH = os.getenv("MODELS_PATH", "./pretrained_models") device = "cuda" if torch.cuda.is_available() else "cpu" transcribe_model, align_model, ssrspeech_model = None, None, None def get_random_string(): return "".join(str(uuid.uuid4()).split("-")) def traditional_to_simplified(segments): converter = opencc.OpenCC('t2s') seg_num = len(segments) for i in range(seg_num): words = segments[i]['words'] for j in range(len(words)): segments[i]['words'][j]['word'] = converter.convert(segments[i]['words'][j]['word']) segments[i]['text'] = converter.convert(segments[i]['text']) return segments @spaces.GPU def seed_everything(seed): if seed != -1: os.environ['PYTHONHASHSEED'] = str(seed) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True def get_mask_interval(transcribe_state, word_span): print(transcribe_state) seg_num = len(transcribe_state['segments']) data = [] for i in range(seg_num): words = transcribe_state['segments'][i]['words'] for item in words: data.append([item['start'], item['end'], item['word']]) s, e = word_span[0], word_span[1] assert s <= e, f"s:{s}, e:{e}" assert s >= 0, f"s:{s}" assert e <= len(data), f"e:{e}" if e == 0: # start start = 0. end = float(data[0][0]) elif s == len(data): # end start = float(data[-1][1]) end = float(data[-1][1]) # don't know the end yet elif s == e: # insert start = float(data[s-1][1]) end = float(data[s][0]) else: start = float(data[s-1][1]) if s > 0 else float(data[s][0]) end = float(data[e][0]) if e < len(data) else float(data[-1][1]) return (start, end) @spaces.GPU class WhisperxAlignModel: def __init__(self, language): from whisperx import load_align_model self.model, self.metadata = load_align_model(language_code=language, device=device) def align(self, segments, audio_path): from whisperx import align, load_audio audio = load_audio(audio_path) return align(segments, self.model, self.metadata, audio, device, return_char_alignments=False)["segments"] @spaces.GPU class WhisperModel: def __init__(self, model_name, language): from whisper import load_model self.model = load_model(model_name, device, language=language) from whisper.tokenizer import get_tokenizer tokenizer = get_tokenizer(multilingual=False, language=language) self.supress_tokens = [-1] + [ i for i in range(tokenizer.eot) if all(c in "0123456789" for c in tokenizer.decode([i]).removeprefix(" ")) ] def transcribe(self, audio_path): return self.model.transcribe(audio_path, suppress_tokens=self.supress_tokens, word_timestamps=True)["segments"] @spaces.GPU class WhisperxModel: def __init__(self, model_name, align_model, language): from whisperx import load_model self.model = load_model(model_name, device, asr_options={"suppress_numerals": True, "max_new_tokens": None, "clip_timestamps": None, "hallucination_silence_threshold": None}, language=language) self.align_model = align_model def transcribe(self, audio_path): segments = self.model.transcribe(audio_path, batch_size=8)["segments"] for segment in segments: segment['text'] = replace_numbers_with_words(segment['text']) return self.align_model.align(segments, audio_path) @spaces.GPU def load_models(ssrspeech_model_name): global transcribe_model, align_model, ssrspeech_model alignment_model_name = "whisperX" whisper_backend_name = "whisperX" if ssrspeech_model_name == "English": ssrspeech_model_name = "English" text_tokenizer = TextTokenizer(backend="espeak") language = "en" transcribe_model_name = "base.en" elif ssrspeech_model_name == "Mandarin": ssrspeech_model_name = "Mandarin" text_tokenizer = TextTokenizer(backend="espeak", language='cmn') language = "zh" transcribe_model_name = "base" align_model = WhisperxAlignModel(language) transcribe_model = WhisperxModel(transcribe_model_name, align_model, language) ssrspeech_fn = f"{MODELS_PATH}/{ssrspeech_model_name}.pth" if not os.path.exists(ssrspeech_fn): os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-{ssrspeech_model_name}/resolve/main/{ssrspeech_model_name}.pth -O " + ssrspeech_fn) print(transcribe_model, align_model) ckpt = torch.load(ssrspeech_fn) model = ssr.SSR_Speech(ckpt["config"]) model.load_state_dict(ckpt["model"]) config = model.args phn2num = ckpt["phn2num"] model.to(device) encodec_fn = f"{MODELS_PATH}/wmencodec.th" if not os.path.exists(encodec_fn): os.system(f"wget https://huggingface.co/westbrook/SSR-Speech-English/resolve/main/wmencodec.th -O " + encodec_fn) ssrspeech_model = { "config": config, "phn2num": phn2num, "model": model, "text_tokenizer": text_tokenizer, "audio_tokenizer": AudioTokenizer(signature=encodec_fn) } success_message = "Success: Models loading completed successfully!" return [ gr.Accordion(), success_message ] def get_transcribe_state(segments): transcript = " ".join([segment["text"] for segment in segments]) transcript = transcript[1:] if transcript[0] == " " else transcript return { "segments": segments, "transcript": transcript, } @spaces.GPU def transcribe(audio_path): global transcribe_model if transcribe_model is None: raise gr.Error("Transcription model not loaded") segments = transcribe_model.transcribe(audio_path) state = get_transcribe_state(segments) success_message = "Success: Transcribe completed successfully!" return [ state["transcript"], state['segments'], state, success_message ] @spaces.GPU def align(segments, audio_path): global align_model if align_model is None: raise gr.Error("Align model not loaded") segments = align_model.align(segments, audio_path) state = get_transcribe_state(segments) return state def get_output_audio(audio_tensors, codec_audio_sr): result = torch.cat(audio_tensors, 1) buffer = io.BytesIO() torchaudio.save(buffer, result, int(codec_audio_sr), format="wav") buffer.seek(0) return buffer.read() def replace_numbers_with_words(sentence): sentence = re.sub(r'(\d+)', r' \1 ', sentence) # add spaces around numbers def replace_with_words(match): num = match.group(0) try: return num2words(num) # Convert numbers to words except: return num # In case num2words fails (unlikely with digits but just to be safe) return re.sub(r'\b\d+\b', replace_with_words, sentence) # Regular expression that matches numbers @spaces.GPU def run(seed, sub_amount, ssrspeech_model_choice, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, kvcache, silence_tokens, aug_text, cfg_coef, prompt_length, audio_path, original_transcript, transcript, mode): global transcribe_model, align_model, ssrspeech_model aug_text = True if aug_text == 1 else False if ssrspeech_model is None: raise gr.Error("ssrspeech model not loaded") seed_everything(seed) if ssrspeech_model_choice == "English": language = "en" elif ssrspeech_model_choice == "Mandarin": language = "zh" # resample audio audio, _ = librosa.load(audio_path, sr=16000) sf.write(audio_path, audio, 16000) # text normalization target_transcript = replace_numbers_with_words(transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ") orig_transcript = replace_numbers_with_words(original_transcript).replace(" ", " ").replace(" ", " ").replace("\n", " ") [orig_transcript, segments, _] = transcribe(audio_path) if language == 'zh': converter = opencc.OpenCC('t2s') orig_transcript = converter.convert(orig_transcript) transcribe_state = align(traditional_to_simplified(segments), audio_path) transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments']) elif language == 'en': orig_transcript = orig_transcript.lower() target_transcript = target_transcript.lower() transcribe_state = align(segments, audio_path) print(orig_transcript) print(target_transcript) if mode == "TTS": info = torchaudio.info(audio_path) duration = info.num_frames / info.sample_rate cut_length = duration # Cut long audio for tts if duration > prompt_length: seg_num = len(transcribe_state['segments']) for i in range(seg_num): words = transcribe_state['segments'][i]['words'] for item in words: if item['end'] >= prompt_length: cut_length = min(item['end'], cut_length) audio, _ = librosa.load(audio_path, sr=16000, duration=cut_length) sf.write(audio_path, audio, 16000) [orig_transcript, segments, _] = transcribe(audio_path) if language == 'zh': converter = opencc.OpenCC('t2s') orig_transcript = converter.convert(orig_transcript) transcribe_state = align(traditional_to_simplified(segments), audio_path) transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments']) elif language == 'en': orig_transcript = orig_transcript.lower() target_transcript = target_transcript.lower() transcribe_state = align(segments, audio_path) print(orig_transcript) target_transcript_copy = target_transcript # for tts cut out if language == 'en': target_transcript_copy = target_transcript_copy.split(' ')[0] elif language == 'zh': target_transcript_copy = target_transcript_copy[0] target_transcript = orig_transcript + ' ' + target_transcript if language == 'en' else orig_transcript + target_transcript print(target_transcript) if mode == "Edit": operations, orig_spans = parse_edit_en(orig_transcript, target_transcript) if language == 'en' else parse_edit_zh(orig_transcript, target_transcript) print(operations) print("orig_spans: ", orig_spans) if len(orig_spans) > 3: raise gr.Error("Current model only supports maximum 3 editings") starting_intervals = [] ending_intervals = [] for orig_span in orig_spans: start, end = get_mask_interval(transcribe_state, orig_span) starting_intervals.append(start) ending_intervals.append(end) print("intervals: ", starting_intervals, ending_intervals) info = torchaudio.info(audio_path) audio_dur = info.num_frames / info.sample_rate def combine_spans(spans, threshold=0.2): spans.sort(key=lambda x: x[0]) combined_spans = [] current_span = spans[0] for i in range(1, len(spans)): next_span = spans[i] if current_span[1] >= next_span[0] - threshold: current_span[1] = max(current_span[1], next_span[1]) else: combined_spans.append(current_span) current_span = next_span combined_spans.append(current_span) return combined_spans morphed_span = [[max(start - sub_amount, 0), min(end + sub_amount, audio_dur)] for start, end in zip(starting_intervals, ending_intervals)] # in seconds morphed_span = combine_spans(morphed_span, threshold=0.2) print("morphed_spans: ", morphed_span) mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span] mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now else: info = torchaudio.info(audio_path) audio_dur = info.num_frames / info.sample_rate morphed_span = [(audio_dur, audio_dur)] # in seconds mask_interval = [[round(span[0]*codec_sr), round(span[1]*codec_sr)] for span in morphed_span] mask_interval = torch.LongTensor(mask_interval) # [M,2], M==1 for now print("mask_interval: ", mask_interval) decode_config = {'top_k': top_k, 'top_p': top_p, 'temperature': temperature, 'stop_repetition': stop_repetition, 'kvcache': kvcache, "codec_audio_sr": codec_audio_sr, "codec_sr": codec_sr} tts = True if mode == "TTS" else False new_audio = inference_one_sample( ssrspeech_model["model"], ssrspeech_model["config"], ssrspeech_model["phn2num"], ssrspeech_model["text_tokenizer"], ssrspeech_model["audio_tokenizer"], audio_path, orig_transcript, target_transcript, mask_interval, cfg_coef, aug_text, False, True, tts, device, decode_config ) audio_tensors = [] # save segments for comparison new_audio = new_audio[0].cpu() torchaudio.save(audio_path, new_audio, codec_audio_sr) if tts: # remove the start parts [new_transcript, new_segments, _] = transcribe(audio_path) if language == 'zh': transcribe_state = align(traditional_to_simplified(new_segments), audio_path) transcribe_state['segments'] = traditional_to_simplified(transcribe_state['segments']) tmp1 = transcribe_state['segments'][0]['words'][0]['word'] tmp2 = target_transcript_copy elif language == 'en': transcribe_state = align(new_segments, audio_path) tmp1 = transcribe_state['segments'][0]['words'][0]['word'].lower() tmp2 = target_transcript_copy.lower() if tmp1 == tmp2: offset = transcribe_state['segments'][0]['words'][0]['start'] else: offset = transcribe_state['segments'][0]['words'][1]['start'] new_audio, _ = torchaudio.load(audio_path, frame_offset=int(offset*codec_audio_sr)) audio_tensors.append(new_audio) output_audio = get_output_audio(audio_tensors, codec_audio_sr) success_message = "Success: Inference successfully!" return output_audio, success_message demo_original_transcript = "Gwynplaine had, besides, for his work and for his feats of strength, round his neck and over his shoulders, an esclavine of leather." demo_text = { "TTS": { "regular": "Gwynplaine had, besides, for his work and for his feats of strength, I cannot believe that the same model can also do text to speech synthesis too!" }, "Edit": { "regular": "Gwynplaine had, besides, for his work and for his feats of strength, take over the stage for half an hour, an esclavine of leather." }, } def get_app(): with gr.Blocks() as app: with gr.Row(): with gr.Column(scale=2): load_models_btn = gr.Button(value="Load models") with gr.Column(scale=5): with gr.Accordion("Select models", open=False) as models_selector: with gr.Row(): ssrspeech_model_choice = gr.Radio(label="ssrspeech model", value="English", choices=["English", "Mandarin"]) with gr.Row(): with gr.Column(scale=2): input_audio = gr.Audio(value=f"{DEMO_PATH}/5895_34622_000026_000002.wav", label="Input Audio", type="filepath", interactive=True) with gr.Group(): original_transcript = gr.Textbox(label="Original transcript", lines=5, value=demo_original_transcript, info="Use whisperx model to get the transcript.") transcribe_btn = gr.Button(value="Transcribe") with gr.Column(scale=3): with gr.Group(): transcript = gr.Textbox(label="Text", lines=7, value=demo_text["Edit"]["regular"]) with gr.Row(): mode = gr.Radio(label="Mode", choices=["Edit", "TTS"], value="Edit") run_btn = gr.Button(value="Run") with gr.Column(scale=2): output_audio = gr.Audio(label="Output Audio") with gr.Row(): with gr.Accordion("Generation Parameters - change these if you are unhappy with the generation", open=False): stop_repetition = gr.Radio(label="stop_repetition", choices=[-1, 1, 2, 3, 4], value=2, info="if there are long silence in the generated audio, reduce the stop_repetition to 2 or 1. -1 = disabled") seed = gr.Number(label="seed", value=-1, precision=0, info="random seeds always works :)") kvcache = gr.Radio(label="kvcache", choices=[0, 1], value=1, info="set to 0 to use less VRAM, but with slower inference") aug_text = gr.Radio(label="aug_text", choices=[0, 1], value=1, info="set to 1 to use cfg") cfg_coef = gr.Number(label="cfg_coef", value=1.5, info="cfg guidance scale, 1.5 is a good value, change if you don't like the results") prompt_length = gr.Number(label="prompt_length", value=3, info="used for tts prompt, will automatically cut the prompt audio to this length") sub_amount = gr.Number(label="sub_amount", value=0.12, info="margin to the left and right of the editing segment, change if you don't like the results") top_p = gr.Number(label="top_p", value=0.8, info="0.9 is a good value, 0.8 is also good") temperature = gr.Number(label="temperature", value=1, info="haven't try other values, do not change") top_k = gr.Number(label="top_k", value=0, info="0 means we don't use topk sampling, because we use topp sampling") codec_audio_sr = gr.Number(label="codec_audio_sr", value=16000, info='encodec specific, do not change') codec_sr = gr.Number(label="codec_sr", value=50, info='encodec specific, do not change') silence_tokens = gr.Textbox(label="silence tokens", value="[1388,1898,131]", info="encodec specific, do not change") success_output = gr.HTML() load_models_btn.click(fn=load_models, inputs=[ssrspeech_model_choice], outputs=[models_selector, success_output]) semgents = gr.State() # not used transcribe_btn.click(fn=transcribe, inputs=[input_audio], outputs=[original_transcript, semgents, success_output]) run_btn.click(fn=run, inputs=[ seed, sub_amount, ssrspeech_model_choice, codec_audio_sr, codec_sr, top_k, top_p, temperature, stop_repetition, kvcache, silence_tokens, aug_text, cfg_coef, prompt_length, input_audio, original_transcript, transcript, mode ], outputs=[output_audio, success_output]) return app if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description="Ssrspeech gradio app.") parser.add_argument("--demo-path", default="./demo", help="Path to demo directory") parser.add_argument("--tmp-path", default="./demo/temp", help="Path to tmp directory") parser.add_argument("--models-path", default="./pretrained_models", help="Path to ssrspeech models directory") parser.add_argument("--port", default=7860, type=int, help="App port") parser.add_argument("--share", action="store_true", help="Launch with public url") os.environ["USER"] = os.getenv("USER", "user") args = parser.parse_args() DEMO_PATH = args.demo_path TMP_PATH = args.tmp_path MODELS_PATH = args.models_path app = get_app() app.queue().launch(share=args.share, server_port=args.port)