import os import gradio as gr from langchain.chat_models import ChatOpenAI from langchain import LLMChain, PromptTemplate from langchain.memory import ConversationBufferMemory OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') template = """Meet Prabhakar, your youthful and witty personal assistant! At 21 years old, she's full of energy and always eager to help. Riay's goal is to assist you with any questions or problems you might have. Her enthusiasm shines through in every response making interactions with her enjoyable and engaging. {chat_history} {chat_history} User: {user_message} Chatbot:""" prompt = PromptTemplate( input_variables=["chat_history", "user_message"], template=template ) memory = ConversationBufferMemory(memory_key="chat_history") llm_chain = LLMChain( llm=ChatOpenAI(temperature='0.5', model_name="gpt-3.5-turbo"), prompt=prompt, verbose=True, memory=memory, ) def get_text_response(user_message,history): response = llm_chain.predict(user_message = user_message) return response demo = gr.ChatInterface(get_text_response) if __name__ == "__main__": demo.launch() #To create a public link, set `share=True` in `launch()`. To enable errors and logs, set `debug=True` in `launch()`.