"""
TTS Dataset Collection Tool with Custom Fonts and Enhanced Features
"""
import os
import json
import nltk
import gradio as gr
import uuid
from datetime import datetime
from pathlib import Path
import logging
from typing import Dict, Tuple, Optional
import traceback
import soundfile as sf
import re
# Download required NLTK data during initialization
try:
nltk.download('punkt') # Download punkt tokenizer data
nltk.data.find('tokenizers/punkt')
except Exception as e:
logger.warning(f"Error downloading NLTK data: {str(e)}")
logger.warning("NLTK tokenization might not work properly")
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Font configurations
FONT_STYLES = {
"english_serif": {
"name": "Times New Roman",
"family": "Times New Roman",
"css": "font-family: 'Times New Roman', serif;"
},
"english_sans": {
"name": "Arial",
"family": "Arial",
"css": "font-family: Arial, sans-serif;"
},
"nastaliq": {
"name": "Nastaliq",
"family": "Noto Nastaliq Urdu",
"css": "font-family: 'Noto Nastaliq Urdu', serif;"
},
"naskh": {
"name": "Naskh",
"family": "Scheherazade New",
"css": "font-family: 'Scheherazade New', serif;"
}
}
class TTSDatasetCollector:
"""Manages TTS dataset collection and organization with enhanced features"""
def __init__(self):
"""Initialize the TTS Dataset Collector"""
# Handle both script and notebook environments for root path
try:
# When running as a script
self.root_path = Path(os.path.dirname(os.path.abspath(__file__))) / "dataset"
except NameError:
# When running in Jupyter/IPython
self.root_path = Path.cwd() / "dataset"
self.fonts_path = self.root_path / "fonts"
self.sentences = []
self.current_index = 0
self.current_font = "english_serif"
self.custom_fonts = {}
self.recordings = {} # Store recordings by sentence index
self.setup_directories()
# Ensure NLTK data is downloaded
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt', quiet=True)
logger.info("TTS Dataset Collector initialized")
def setup_directories(self) -> None:
"""Create necessary directory structure with logging"""
try:
# Create main dataset directory
self.root_path.mkdir(parents=True, exist_ok=True)
# Create subdirectories
for subdir in ['audio', 'transcriptions', 'metadata', 'fonts']:
(self.root_path / subdir).mkdir(parents=True, exist_ok=True)
# Initialize log file
log_file = self.root_path / 'dataset_log.txt'
if not log_file.exists():
with open(log_file, 'w', encoding='utf-8') as f:
f.write(f"Dataset collection initialized on {datetime.now().isoformat()}\n")
logger.info("Directory structure created successfully")
except Exception as e:
logger.error(f"Failed to create directory structure: {str(e)}")
logger.error(traceback.format_exc())
raise RuntimeError("Failed to initialize directory structure")
def log_operation(self, message: str, level: str = "info") -> None:
"""Log operations with timestamp and level"""
try:
log_file = self.root_path / 'dataset_log.txt'
timestamp = datetime.now().isoformat()
with open(log_file, 'a', encoding='utf-8') as f:
f.write(f"[{timestamp}] [{level.upper()}] {message}\n")
if level.lower() == "error":
logger.error(message)
else:
logger.info(message)
except Exception as e:
logger.error(f"Failed to log operation: {str(e)}")
def process_text(self, text: str) -> Tuple[bool, str]:
"""Process pasted or loaded text with error handling"""
try:
if not text.strip():
return False, "Text is empty"
# Simple sentence splitting as fallback
def simple_split_sentences(text):
# Split on common sentence endings
sentences = []
current = []
for line in text.split('\n'):
line = line.strip()
if not line:
continue
# Split on common sentence endings
parts = re.split(r'[.!?]', line)
for part in parts:
part = part.strip()
if part:
current.append(part)
sentences.append(' '.join(current))
current = []
if current:
sentences.append(' '.join(current))
return [s.strip() for s in sentences if s.strip()]
try:
# Try NLTK first
self.sentences = nltk.sent_tokenize(text.strip())
except Exception as e:
logger.warning(f"NLTK tokenization failed, falling back to simple splitting: {str(e)}")
# Fallback to simple splitting
self.sentences = simple_split_sentences(text.strip())
if not self.sentences:
return False, "No valid sentences found in text"
self.current_index = 0
# Log success
self.log_operation(f"Processed text with {len(self.sentences)} sentences")
return True, f"Successfully loaded {len(self.sentences)} sentences"
except Exception as e:
error_msg = f"Error processing text: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg
def load_text_file(self, file) -> Tuple[bool, str]:
"""Process and load text file with enhanced error handling"""
if not file:
return False, "No file provided"
try:
# Validate file extension
if not file.name.endswith('.txt'):
return False, "Only .txt files are supported"
text = file.read().decode('utf-8')
return self.process_text(text)
except UnicodeDecodeError:
error_msg = "File encoding error. Please ensure the file is UTF-8 encoded"
self.log_operation(error_msg, "error")
return False, error_msg
except Exception as e:
error_msg = f"Error loading file: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg
def get_styled_text(self, text: str) -> str:
"""Get text with current font styling"""
font_css = FONT_STYLES.get(self.current_font, {}).get('css', '')
return f"
{text}
"
def set_font(self, font_style: str) -> Tuple[bool, str]:
"""Set the current font style"""
if font_style not in FONT_STYLES and font_style not in self.custom_fonts:
available_fonts = ', '.join(list(FONT_STYLES.keys()) + list(self.custom_fonts.keys()))
return False, f"Invalid font style. Available styles: {available_fonts}"
self.current_font = font_style
return True, f"Font style set to {font_style}"
def add_custom_font(self, font_file_path) -> Tuple[bool, str]:
"""Add a custom font from the uploaded TTF file"""
try:
if not font_file_path:
return False, "No font file provided"
if not font_file_path.endswith('.ttf'):
return False, "Only .ttf font files are supported"
# Generate a unique font family name
font_family = f"font_{uuid.uuid4().hex[:8]}"
font_filename = font_family + '.ttf'
font_dest = self.fonts_path / font_filename
# Read and save the font file
with open(font_file_path, 'rb') as f_src, open(font_dest, 'wb') as f_dest:
f_dest.write(f_src.read())
# Add to custom fonts
self.custom_fonts[font_family] = {
'name': os.path.basename(font_file_path),
'family': font_family,
'css': f"font-family: '{font_family}', serif;"
}
# Update the FONT_STYLES with the custom font
FONT_STYLES[font_family] = self.custom_fonts[font_family]
# Log success
self.log_operation(f"Added custom font: {font_file_path} as {font_family}")
return True, f"Custom font '{os.path.basename(font_file_path)}' added successfully"
except Exception as e:
error_msg = f"Error adding custom font: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg
def generate_filenames(self, dataset_name: str, speaker_id: str, sentence_text: str) -> Tuple[str, str]:
"""Generate unique filenames for audio and text files"""
line_number = self.current_index + 1
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
# Sanitize strings for filenames
def sanitize_filename(s):
return re.sub(r'[^a-zA-Z0-9_-]', '_', s)[:50]
dataset_name_safe = sanitize_filename(dataset_name)
speaker_id_safe = sanitize_filename(speaker_id)
sentence_excerpt = sanitize_filename(sentence_text[:20])
base_name = f"{dataset_name_safe}_{speaker_id_safe}_line{line_number}_{sentence_excerpt}_{timestamp}"
return f"{base_name}.wav", f"{base_name}.txt"
def save_recording(self, audio_file, speaker_id: str, dataset_name: str) -> Tuple[bool, str, Dict]:
"""Save recording with enhanced error handling and logging"""
if not all([audio_file, speaker_id, dataset_name]):
missing = []
if not audio_file:
missing.append("audio recording")
if not speaker_id:
missing.append("speaker ID")
if not dataset_name:
missing.append("dataset name")
return False, f"Missing required information: {', '.join(missing)}", {}
# Check if sentences have been loaded
if not self.sentences:
return False, "No sentences have been loaded. Please load text before saving recordings.", {}
if self.current_index >= len(self.sentences):
return False, "Current sentence index is out of range.", {}
try:
# Validate inputs
if not speaker_id.strip().isalnum():
return False, "Speaker ID must contain only letters and numbers", {}
if not dataset_name.strip().isalnum():
return False, "Dataset name must contain only letters and numbers", {}
# Get current sentence text
sentence_text = self.sentences[self.current_index]
# Generate filenames
audio_name, text_name = self.generate_filenames(dataset_name, speaker_id, sentence_text)
# Create speaker directories
audio_dir = self.root_path / 'audio' / speaker_id
text_dir = self.root_path / 'transcriptions' / speaker_id
audio_dir.mkdir(parents=True, exist_ok=True)
text_dir.mkdir(parents=True, exist_ok=True)
# Save audio file
audio_path = audio_dir / audio_name
# Read the audio file using soundfile
audio_data, sampling_rate = sf.read(audio_file)
# Save audio file
sf.write(str(audio_path), audio_data, sampling_rate)
# Save transcription
text_path = text_dir / text_name
self.save_transcription(
text_path,
sentence_text,
{
'speaker_id': speaker_id,
'dataset_name': dataset_name,
'timestamp': datetime.now().isoformat(),
'audio_file': audio_name,
'font_style': self.current_font
}
)
# Update metadata
self.update_metadata(speaker_id, dataset_name)
# Store the recording
self.recordings[self.current_index] = {
'audio_file': audio_file,
'speaker_id': speaker_id,
'dataset_name': dataset_name,
'sentence': self.sentences[self.current_index]
}
# Log success
self.log_operation(
f"Saved recording: Speaker={speaker_id}, Dataset={dataset_name}, "
f"Audio={audio_name}, Text={text_name}"
)
return True, f"Recording saved successfully as {audio_name}", self.recordings
except Exception as e:
error_msg = f"Error saving recording: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
return False, error_msg, self.recordings
def save_transcription(self, file_path: Path, text: str, metadata: Dict) -> None:
"""Save transcription with metadata"""
content = f"""[METADATA]
Recording_ID: {metadata['audio_file']}
Speaker_ID: {metadata['speaker_id']}
Dataset_Name: {metadata['dataset_name']}
Timestamp: {metadata['timestamp']}
Font_Style: {metadata['font_style']}
[TEXT]
{text}
"""
with open(file_path, 'w', encoding='utf-8') as f:
f.write(content)
def update_metadata(self, speaker_id: str, dataset_name: str) -> None:
"""Update dataset metadata with error handling"""
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
try:
if metadata_file.exists():
with open(metadata_file, 'r') as f:
metadata = json.load(f)
else:
metadata = {'speakers': {}, 'last_updated': None}
# Update speaker data
if speaker_id not in metadata['speakers']:
metadata['speakers'][speaker_id] = {
'total_recordings': 0,
'datasets': {}
}
if dataset_name not in metadata['speakers'][speaker_id]['datasets']:
metadata['speakers'][speaker_id]['datasets'][dataset_name] = {
'recordings': 0,
'sentences': len(self.sentences),
'recorded_sentences': [],
'first_recording': datetime.now().isoformat(),
'last_recording': None,
'font_styles_used': []
}
# Update counts and timestamps
metadata['speakers'][speaker_id]['total_recordings'] += 1
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recordings'] += 1
metadata['speakers'][speaker_id]['datasets'][dataset_name]['last_recording'] = \
datetime.now().isoformat()
# Add current index to recorded sentences
if self.current_index not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences']:
metadata['speakers'][speaker_id]['datasets'][dataset_name]['recorded_sentences'].append(self.current_index)
# Update font styles
if self.current_font not in metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used']:
metadata['speakers'][speaker_id]['datasets'][dataset_name]['font_styles_used'].append(
self.current_font
)
metadata['last_updated'] = datetime.now().isoformat()
# Save updated metadata
with open(metadata_file, 'w') as f:
json.dump(metadata, f, indent=2)
self.log_operation(f"Updated metadata for {speaker_id} in {dataset_name}")
except Exception as e:
error_msg = f"Error updating metadata: {str(e)}"
self.log_operation(error_msg, "error")
logger.error(traceback.format_exc())
def get_navigation_info(self) -> Dict[str, Optional[str]]:
"""Get current and next sentence information"""
if not self.sentences:
return {
'current': None,
'next': None,
'progress': "No text loaded"
}
current = self.get_styled_text(self.sentences[self.current_index])
next_text = None
if self.current_index < len(self.sentences) - 1:
next_text = self.get_styled_text(self.sentences[self.current_index + 1])
progress = f"Sentence {self.current_index + 1} of {len(self.sentences)}"
return {
'current': current,
'next': next_text,
'progress': progress
}
def navigate(self, direction: str) -> Dict[str, Optional[str]]:
"""Navigate through sentences"""
if not self.sentences:
return {
'current': None,
'next': None,
'progress': "No text loaded",
'status': "⚠️ Please load a text file first"
}
if direction == "next" and self.current_index < len(self.sentences) - 1:
self.current_index += 1
elif direction == "prev" and self.current_index > 0:
self.current_index -= 1
nav_info = self.get_navigation_info()
nav_info['status'] = "✅ Navigation successful"
return nav_info
def get_dataset_statistics(self) -> Dict:
"""Get current dataset statistics"""
try:
metadata_file = self.root_path / 'metadata' / 'dataset_info.json'
if not metadata_file.exists():
return {}
with open(metadata_file, 'r') as f:
metadata = json.load(f)
# Flatten statistics for display
total_sentences = len(self.sentences)
recorded = sum(len(dataset.get('recorded_sentences', [])) for speaker in metadata['speakers'].values() for dataset in speaker['datasets'].values())
remaining = total_sentences - recorded
stats = {
"Total Sentences": total_sentences,
"Recorded Sentences": recorded,
"Remaining Sentences": remaining,
"Last Updated": metadata.get('last_updated', 'N/A')
}
return stats
except Exception as e:
logger.error(f"Error reading dataset statistics: {str(e)}")
return {}
def get_last_audio_path(self, speaker_id: str) -> Optional[str]:
"""Get the path to the last saved audio file for downloading"""
audio_dir = self.root_path / 'audio' / speaker_id
audio_files = sorted(audio_dir.glob('*.wav'), key=lambda f: f.stat().st_mtime, reverse=True)
if audio_files:
return str(audio_files[0])
else:
return None
def get_last_transcript_path(self, speaker_id: str) -> Optional[str]:
"""Get the path to the last saved transcription file for downloading"""
text_dir = self.root_path / 'transcriptions' / speaker_id
text_files = sorted(text_dir.glob('*.txt'), key=lambda f: f.stat().st_mtime, reverse=True)
if text_files:
return str(text_files[0])
else:
return None
def create_zip_archive(self, speaker_id: str) -> Optional[str]:
"""Create a ZIP archive of all recordings and transcriptions for a speaker"""
try:
from zipfile import ZipFile
import tempfile
# Create temporary zip file
temp_dir = Path(tempfile.gettempdir())
zip_path = temp_dir / f"{speaker_id}_recordings.zip"
with ZipFile(zip_path, 'w') as zipf:
# Add audio files
audio_dir = self.root_path / 'audio' / speaker_id
if audio_dir.exists():
for audio_file in audio_dir.glob('*.wav'):
zipf.write(audio_file, f"audio/{audio_file.name}")
# Add transcription files
text_dir = self.root_path / 'transcriptions' / speaker_id
if text_dir.exists():
for text_file in text_dir.glob('*.txt'):
zipf.write(text_file, f"transcriptions/{text_file.name}")
return str(zip_path)
except Exception as e:
logger.error(f"Error creating zip archive: {str(e)}")
return None
def create_interface():
"""Create Gradio interface with enhanced features"""
collector = TTSDatasetCollector()
# Create custom CSS for fonts
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.record-button {
font-size: 1em !important;
padding: 10px !important;
}
.sentence-display {
font-size: 1.4em !important;
padding: 15px !important;
border: 1px solid #ddd !important;
border-radius: 8px !important;
margin: 10px 0 !important;
min-height: 100px !important;
}
.small-input {
max-width: 300px !important;
}
"""
# Include Google Fonts for Nastaliq and Naskh
google_fonts_css = """
@import url('https://fonts.googleapis.com/earlyaccess/notonastaliqurdu.css');
@import url('https://fonts.googleapis.com/css2?family=Scheherazade+New&display=swap');
"""
custom_css = google_fonts_css + custom_css
with gr.Blocks(title="TTS Dataset Collection Tool", css=custom_css) as interface:
gr.Markdown("# TTS Dataset Collection Tool")
status = gr.Textbox(
label="Status",
interactive=False,
max_lines=3,
elem_classes=["small-input"]
)
with gr.Row():
# Left column - Configuration and Input
with gr.Column(scale=1):
text_input = gr.Textbox(
label="Paste Text",
placeholder="Paste your text here...",
lines=5,
elem_classes=["small-input"],
interactive=True
)
file_input = gr.File(
label="Or Upload Text File (.txt)",
file_types=[".txt"],
elem_classes=["small-input"]
)
speaker_id = gr.Textbox(
label="Speaker ID",
placeholder="Enter unique speaker identifier (letters and numbers only)",
elem_classes=["small-input"]
)
dataset_name = gr.Textbox(
label="Dataset Name",
placeholder="Enter dataset name (letters and numbers only)",
elem_classes=["small-input"]
)
font_select = gr.Dropdown(
choices=list(FONT_STYLES.keys()),
value="english_serif",
label="Select Font Style",
elem_classes=["small-input"]
)
# Custom font upload
with gr.Accordion("Custom Font Upload", open=False):
font_file_input = gr.File(
label="Upload Custom Font (.ttf)",
file_types=[".ttf"],
elem_classes=["small-input"],
type="filepath"
)
add_font_btn = gr.Button("Add Custom Font")
# Dataset Info
with gr.Accordion("Dataset Statistics", open=False):
dataset_info = gr.JSON(
label="",
value={}
)
# Right column - Recording
with gr.Column(scale=2):
current_text = gr.HTML(
label="Current Sentence",
elem_classes=["sentence-display"]
)
next_text = gr.HTML(
label="Next Sentence",
elem_classes=["sentence-display"]
)
progress = gr.HTML("")
with gr.Row():
audio_recorder = gr.Audio(
label="Record Audio",
type="filepath",
elem_classes=["record-button"],
interactive=True,
streaming=False # Disable streaming to prevent freezing
)
clear_btn = gr.Button("Clear Recording", variant="secondary")
# Controls
with gr.Row():
prev_btn = gr.Button("Previous", variant="secondary")
save_btn = gr.Button("Save Recording", variant="primary")
next_btn = gr.Button("Next", variant="primary")
# Download Links
with gr.Row():
download_audio = gr.File(label="Download Last Audio", interactive=False)
download_transcript = gr.File(label="Download Last Transcript", interactive=False)
download_all = gr.File(label="Download All Recordings", interactive=False)
def download_all_recordings(speaker_id_value):
"""Handle downloading all recordings for a speaker"""
if not speaker_id_value:
return {
status: "⚠️ Please enter a Speaker ID first",
download_all: None
}
zip_path = collector.create_zip_archive(speaker_id_value)
if zip_path:
return {
status: "✅ Archive created successfully",
download_all: zip_path
}
return {
status: "❌ Failed to create archive",
download_all: None
}
# Add download all button and its event handler
download_all_btn = gr.Button("Download All Recordings", variant="secondary")
download_all_btn.click(
download_all_recordings,
inputs=[speaker_id],
outputs=[status, download_all]
)
# Add recordings display
with gr.Column(scale=2):
recordings_display = gr.HTML(
label="Saved Recordings",
value=""
)
def process_pasted_text(text):
"""Handle pasted text input"""
if not text:
return {
current_text: "",
next_text: "",
progress: "",
status: "⚠️ No text provided",
dataset_info: collector.get_dataset_statistics()
}
success, msg = collector.process_text(text)
if not success:
return {
current_text: "",
next_text: "",
progress: "",
status: f"❌ {msg}",
dataset_info: collector.get_dataset_statistics()
}
nav_info = collector.get_navigation_info()
progress_bar = f" {nav_info['progress']}"
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: f"✅ {msg}",
dataset_info: collector.get_dataset_statistics()
}
def update_font(font_style):
"""Update font and refresh display"""
success, msg = collector.set_font(font_style)
if not success:
return {status: msg}
nav_info = collector.get_navigation_info()
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
status: f"Font updated to {font_style}"
}
def load_file(file):
"""Handle file loading with enhanced error reporting"""
if not file:
return {
current_text: "",
next_text: "",
progress: "",
status: "⚠️ No file selected",
dataset_info: collector.get_dataset_statistics()
}
success, msg = collector.load_text_file(file)
if not success:
return {
current_text: "",
next_text: "",
progress: "",
status: f"❌ {msg}",
dataset_info: collector.get_dataset_statistics()
}
nav_info = collector.get_navigation_info()
progress_bar = f" {nav_info['progress']}"
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: f"✅ {msg}",
dataset_info: collector.get_dataset_statistics()
}
def save_current_recording(audio_file, speaker_id_value, dataset_name_value):
"""Handle saving the current recording"""
if not audio_file:
return {
status: "⚠️ Please record audio first",
download_audio: None,
download_transcript: None,
download_all: None,
recordings_display: "No recordings yet
",
audio_recorder: None # Clear the recorder
}
success, msg, recordings = collector.save_recording(
audio_file, speaker_id_value, dataset_name_value
)
if not success:
return {
status: f"❌ {msg}",
dataset_info: collector.get_dataset_statistics(),
download_audio: None,
download_transcript: None,
download_all: None,
recordings_display: "No recordings yet
"
}
# Get paths to the saved files
audio_path = collector.get_last_audio_path(speaker_id_value)
transcript_path = collector.get_last_transcript_path(speaker_id_value)
zip_path = collector.create_zip_archive(speaker_id_value)
# Auto-advance to next sentence after successful save
nav_info = collector.navigate("next")
progress_bar = f" {nav_info['progress']}"
# Update recordings display
recordings_html = create_recordings_display(recordings)
result = {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: f"✅ {msg}",
dataset_info: collector.get_dataset_statistics(),
download_audio: audio_path,
download_transcript: transcript_path,
download_all: zip_path,
recordings_display: recordings_html,
audio_recorder: None # Clear the recorder after successful save
}
return result
def create_recordings_display(recordings):
"""Create HTML display for recordings"""
recordings_html = "Saved Recordings:
"
for idx, rec in recordings.items():
recordings_html += f"""
Sentence {idx + 1}: {rec['sentence']}
"""
recordings_html += "
"
return recordings_html
def navigate_sentences(direction):
"""Handle navigation between sentences"""
nav_info = collector.navigate(direction)
progress_bar = f" {nav_info['progress']}"
return {
current_text: nav_info['current'],
next_text: nav_info['next'],
progress: progress_bar,
status: nav_info['status']
}
def add_custom_font(font_file_path):
"""Handle adding a custom font"""
if not font_file_path:
return {
font_select: gr.update(),
status: "⚠️ No font file selected"
}
success, msg = collector.add_custom_font(font_file_path)
if not success:
return {
font_select: gr.update(),
status: f"❌ {msg}"
}
# Update font dropdown
font_choices = list(FONT_STYLES.keys()) + list(collector.custom_fonts.keys())
# Return updates to font_select and status
return {
font_select: gr.update(choices=font_choices),
status: f"✅ {msg}"
}
def clear_recording():
"""Clear the current recording"""
return {
audio_recorder: None,
status: "Recording cleared"
}
# Add clear button handler
clear_btn.click(
clear_recording,
outputs=[audio_recorder, status]
)
# Event handlers
text_input.change(
process_pasted_text,
inputs=[text_input],
outputs=[current_text, next_text, progress, status, dataset_info]
)
file_input.upload(
load_file,
inputs=[file_input],
outputs=[current_text, next_text, progress, status, dataset_info]
)
font_select.change(
update_font,
inputs=[font_select],
outputs=[current_text, next_text, status]
)
add_font_btn.click(
add_custom_font,
inputs=[font_file_input],
outputs=[font_select, status]
)
save_btn.click(
save_current_recording,
inputs=[audio_recorder, speaker_id, dataset_name],
outputs=[current_text, next_text, progress, status, dataset_info,
download_audio, download_transcript, download_all, recordings_display,
audio_recorder] # Add audio_recorder to outputs
)
prev_btn.click(
lambda: navigate_sentences("prev"),
outputs=[current_text, next_text, progress, status]
)
next_btn.click(
lambda: navigate_sentences("next"),
outputs=[current_text, next_text, progress, status]
)
# Initialize dataset info
dataset_info.value = collector.get_dataset_statistics()
return interface
if __name__ == "__main__":
try:
# Set up any required environment variables
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
# Create and launch the interface
interface = create_interface()
interface.queue() # Enable queuing for better handling of concurrent users
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
debug=True,
show_error=True
)
except Exception as e:
logger.error(f"Failed to launch interface: {str(e)}")
logger.error(traceback.format_exc())
raise