import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the fine-tuned model and tokenizer model = AutoModelForCausalLM.from_pretrained("PierreJousselin/lora_model") tokenizer = AutoTokenizer.from_pretrained("PierreJousselin/lora_model") # Define the text generation function def generate_text(prompt): # Encode the input prompt input_ids = tokenizer.encode(prompt, return_tensors="pt") # Generate text using the model generated_ids = model.generate( input_ids, max_length=150, # Maximum length of the generated text num_return_sequences=1, # Number of sequences to generate temperature=0.7, # Sampling temperature (controls randomness) top_p=0.9, # Nucleus sampling (controls diversity) top_k=50, # Top-k sampling (limits the number of next word candidates) no_repeat_ngram_size=2, # Avoid repeating n-grams ) # Decode the generated text generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) return generated_text # Create the Gradio interface iface = gr.Interface( fn=generate_text, # The function to call when the user provides input inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), # Input box outputs=gr.Textbox(), # Output box to display the generated text title="Lora Fine-Tuned Language Model", # Interface title description="This is a Gradio interface for the Lora fine-tuned language model. Enter a prompt to generate text.", # Description ) # Launch the interface iface.launch()