import datetime import pandas as pd import os from entsoe import EntsoePandasClient from pymongo.mongo_client import MongoClient from pymongo.server_api import ServerApi entsoe_api_key = os.getenv("ENSTO_API") mongo_password= os.getenv("mango_password") client = EntsoePandasClient(api_key=entsoe_api_key) country_code = "SE_3" energy_load_data = pd.DataFrame() start_date = pd.Timestamp( datetime.datetime.now() + datetime.timedelta(days=-2), tz="Europe/Berlin" ) end_date = pd.Timestamp( datetime.datetime.now() + datetime.timedelta(days=1), tz="Europe/Berlin" ) load = client.query_load(country_code, start=start_date, end=end_date) if load is not None and not load.empty: # Resample hourly data to daily averages daily_load = load.resample("D").mean() daily_load = daily_load.reset_index() daily_load.columns = ["date", "load"] # Append to the main DataFrame energy_load_data = pd.concat([energy_load_data, daily_load], axis=0) energy_load_data['country_code']=country_code energy_load_data['date'] = pd.to_datetime(energy_load_data['date'], format='%Y-%m-%d') energy_load_data['date'] = pd.to_datetime(energy_load_data['date']).dt.date energy_load_data['date'] = pd.to_datetime(energy_load_data['date']) energy_load_data = energy_load_data.iloc[[-1]] uri = "mongodb+srv://pgmjo:"+mongo_password+"@cluster0.noq3s.mongodb.net/?retryWrites=true&w=majority&appName=Cluster0" # Create a new client and connect to the server client = MongoClient(uri) db = client["daily_energy_load"] # Replace 'mydatabase' with your database name collection = db["S3"] # Replace 'mycollection' with your collection name data_dict = energy_load_data.to_dict("records") # Insérer dans la collection MongoDB result = collection.insert_many(data_dict)