import gradio as gr import pixeltable as pxt import numpy as np from datetime import datetime from pixeltable.functions.huggingface import sentence_transformer from pixeltable.functions import openai import os # Ensure OpenAI API key is set if 'OPENAI_API_KEY' not in os.environ: os.environ['OPENAI_API_KEY'] = input('Enter your OpenAI API key: ') # Initialize Pixeltable pxt.drop_dir('story_builder', force=True) pxt.create_dir('story_builder') # Create embedding function @pxt.expr_udf def embed_text(text: str) -> np.ndarray: return sentence_transformer(text, model_id='all-MiniLM-L6-v2') # Create a table to store story contributions story_table = pxt.create_table( 'story_builder.contributions', { 'contributor': pxt.StringType(), 'content': pxt.StringType(), 'timestamp': pxt.TimestampType(), 'cumulative_story': pxt.StringType() } ) # Add an embedding index to the content column story_table.add_embedding_index('content', string_embed=embed_text) @pxt.udf def generate_summary(story: str) -> list[dict]: system_msg = "You are an expert summarizer. Provide a concise summary of the given story, highlighting key plot points and themes." user_msg = f"Story: {story}\n\nSummarize this story:" return [ {'role': 'system', 'content': system_msg}, {'role': 'user', 'content': user_msg} ] story_table['summary_prompt'] = generate_summary(story_table.cumulative_story) story_table['summary_response'] = openai.chat_completions( messages=story_table.summary_prompt, model='gpt-3.5-turbo', max_tokens=200 ) @pxt.udf def generate_continuation(context: str) -> list[dict]: system_msg = "You are a creative writer. Continue the story based on the given context. Write a paragraph that logically follow the provided content." user_msg = f"Context: {context}\n\nContinue the story:" return [ {'role': 'system', 'content': system_msg}, {'role': 'user', 'content': user_msg} ] story_table['continuation_prompt'] = generate_continuation(story_table.cumulative_story) story_table['continuation_response'] = openai.chat_completions( messages=story_table.continuation_prompt, model='gpt-3.5-turbo', max_tokens=50 ) # Function to get the current cumulative story def get_current_story(): latest_entry = story_table.tail(1) if len(latest_entry) > 0: return latest_entry['cumulative_story'][0] return "" # Functions for Gradio interface def add_contribution(contributor, content): current_story = get_current_story() new_cumulative_story = current_story + " " + content if current_story else content story_table.insert([{ 'contributor': contributor, 'content': content, 'timestamp': datetime.now(), 'cumulative_story': new_cumulative_story }]) return "Contribution added successfully!", new_cumulative_story def get_similar_parts(query, num_results=5): sim = story_table.content.similarity(query) results = story_table.order_by(sim, asc=False).limit(num_results).select(story_table.content, story_table.contributor, sim=sim).collect() return results.to_pandas() def generate_next_part(): continuation = story_table.select(continuation=story_table.continuation_response.choices[0].message.content).tail(1)['continuation'][0] return continuation def summarize_story(): summary = story_table.select(summary=story_table.summary_response.choices[0].message.content).tail(1)['summary'][0] return summary # Gradio interface with gr.Blocks(theme=gr.themes.Base()) as demo: gr.HTML( """
Pixeltable
""" ) gr.Markdown( """ # 📚 Collaborative Story Builder Welcome to the Collaborative Story Builder! This app allows multiple users to contribute to a story, building it incrementally. Pixeltable manages the data, enables similarity search, and helps generate continuations and summaries. """ ) with gr.Tabs(): with gr.TabItem("Contribute"): with gr.Row(): with gr.Column(scale=2): contributor = gr.Textbox(label="Your Name") content = gr.Textbox(label="Your Contribution", lines=5) submit_btn = gr.Button("Submit Contribution", variant="primary") with gr.Column(scale=3): status = gr.Textbox(label="Status") current_story = gr.Textbox(label="Current Story", lines=10, interactive=False) with gr.TabItem("Search & Generate"): with gr.Row(): with gr.Column(): search_query = gr.Textbox(label="Search Current Contributions") num_results = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Results") search_btn = gr.Button("Search", variant="secondary") search_results = gr.Dataframe( headers=["Content", "Contributor", "Similarity"], label="Similar Parts" ) with gr.Column(): generate_btn = gr.Button("Generate Next Part", variant="primary") generated_part = gr.Textbox(label="Generated Continuation", lines=5) with gr.TabItem("Summary"): summarize_btn = gr.Button("Summarize Story", variant="primary") summary = gr.Textbox(label="Story Summary", lines=8) submit_btn.click(add_contribution, inputs=[contributor, content], outputs=[status, current_story]) search_btn.click(get_similar_parts, inputs=[search_query, num_results], outputs=[search_results]) generate_btn.click(generate_next_part, outputs=[generated_part]) summarize_btn.click(summarize_story, outputs=[summary]) gr.HTML( """

Powered by Pixeltable | GitHub

""" ) if __name__ == "__main__": demo.launch()