import gradio as gr from transformers import TrOCRProcessor, VisionEncoderDecoderModel import requests from PIL import Image import os processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") model = VisionEncoderDecoderModel.from_pretrained("ericvo/scribbl-scan-trocr") # load image examples urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU'] for idx, url in enumerate(urls): image = Image.open(requests.get(url, stream=True).raw) image.save(f"image_{idx}.png") def process_image(image): # prepare image pixel_values = processor(image, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # decode generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] return generated_text title = "TrOCR - Fine tuned on IAM Dataset" article = "
TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models | Github Repo
" #css = """.output_image, .input_image {height: 600px !important}""" examples = [ [os.path.join(os.path.abspath(''), './examples/sample_1.jpg')], [os.path.join(os.path.abspath(''), './examples/sample_2.jpg')], [os.path.join(os.path.abspath(''), './examples/sample_3.jpg')] ] description = """ Try the examples at bottom to get started. """ iface = gr.Interface( fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Textbox(), title=title, examples=examples, description=description, cache_examples=True # examples=examples ) iface.launch()