import streamlit as st from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.text_splitter import CharacterTextSplitter from langchain.document_loaders import DirectoryLoader, PyPDFLoader import os from PyPDF2 import PdfReader from transformers import pipeline from transformers import AutoModel from googletrans import Translator #from transformers import * ########### #pip install faiss-cpu #pip install langchain #pip install pypdf #pip tiktoken #pip install InstructorEmbedding ############### # PDF in String umwandeln def get_pdf_text(folder_path): translator = Translator() text = "" # Durchsuche alle Dateien im angegebenen Verzeichnis for filename in os.listdir(folder_path): filepath = os.path.join(folder_path, filename) # Überprüfe, ob die Datei die Erweiterung ".pdf" hat if os.path.isfile(filepath) and filename.lower().endswith(".pdf"): pdf_reader = PdfReader(filepath) for page in pdf_reader.pages: text += page.extract_text() #text += '\n' text=text.replace("\n", " ") text=text.replace("- ", "") text = translator.translate(text, dest ='en').text st.text(text) return text #Chunks erstellen def get_text_chunks(text): #Arbeitsweise Textsplitter definieren text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks # nur zum Anlegen des lokalen Verzeichnisses "Store" und speichern der Vektor-Datenbank def create_vectorstore_and_store(): folder_path = './files' pdf_text = get_pdf_text(folder_path) text_chunks = get_text_chunks(pdf_text) embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base") #embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2") # Initiate Faiss DB vectorstoreDB = FAISS.from_texts(texts=text_chunks,embedding=embeddings)#texts=text_chunks, # Verzeichnis in dem die VektorDB gespeichert werden soll save_directory = "Store" #VektorDB lokal speichern vectorstoreDB.save_local(save_directory) return None ######## def get_vectorstore(): embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-base") #embeddings = HuggingFaceInstructEmbeddings(model_name="aari1995/German_Semantic_STS_V2") #Abruf lokaler Vektordatenbank save_directory = "Store" vectorstoreDB = FAISS.load_local(save_directory, embeddings) return vectorstoreDB def get_llm_answer(user_question): #if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt #user_question = st.text_area("Stell mir eine Frage: ") #if os.path.exists("./Store"): #Nutzereingabe nur eingelesen, wenn vectorstore angelegt # Retriever sucht passende Textausschnitte in den PDFs (unformatiert) translator = Translator() translator.translate(user_question, dest='en') retriever=get_vectorstore().as_retriever() retrieved_docs=retriever.invoke( user_question ) # Top 3 Suchergebnisse des Retrievers als Context speichern context=""+retrieved_docs[0].page_content+retrieved_docs[1].page_content+retrieved_docs[2].page_content # Context bereinigen context=context.replace("\n", " ") context=context.replace("- ", "") # Erstelle die Question Answering-Pipeline für Deutsch qa_pipeline = pipeline("question-answering", model="deutsche-telekom/bert-multi-english-german-squad2", tokenizer="deutsche-telekom/bert-multi-english-german-squad2") # Frage beantworten mit Q&A Pipeline answer = qa_pipeline(question=user_question, context=context, max_length=200) antw = translator.translate(answer["answer"],dest='de') return antw def main(): st.set_page_config( page_title="Chatbot", layout="wide", initial_sidebar_state="expanded", ) st.text("Chatbot Rene ist über Telegram erreichbar!") if __name__ == '__main__': main()