import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("R3troR0b/What-If-Explorer") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the prompt based on the message and history prompt = system_message + "\n" for val in history: if val[0]: prompt += "User: " + val[0] + "\n" if val[1]: prompt += "Assistant: " + val[1] + "\n" prompt += "User: " + message + "\nAssistant:" response = "" # Prevent infinite loops by limiting history and avoiding repeated responses if len(history) > 5: # Limit history to the last 5 exchanges history = history[-5:] # Detect if responses are getting repetitive and stop the loop if len(set([h[1] for h in history])) == 1: # All assistant's responses are the same yield "It seems we're repeating ourselves. Let's move to a new topic." return # Use text-generation instead of chat-completion for message in client.text_generation( prompt=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): # Since the message is a string, no need for indexing token = message.replace(prompt, '') response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()