import gradio as gr import pandas as pd from datasets import load_dataset from transformers import T5ForConditionalGeneration, T5Tokenizer device = 'cpu' # if you have a GPU tokenizer = T5Tokenizer.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large') model = T5ForConditionalGeneration.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large').to(device) HF_TOKEN = os.getenv("HF_TOKEN") OUTPUTS_DATASET = "HuggingFaceH4/instruction-pilot-outputs-filtered" ds = load_dataset(OUTPUTS_DATASET, split="train", use_auth_token=HF_TOKEN) def process(): sample_ds = ds.shuffle().select(range(1)) df = pd.DataFrame.from_records(sample["filtered_outputs"]) input_text = "POST: "+ sample["prompt"]+ "\n\n RESPONSE A: Lime juice, and zest, then freeze in small quantities.\n\n RESPONSE B: Lime marmalade lol\n\n Which response is better? RESPONSE" x = tokenizer([input_text], return_tensors='pt').input_ids.to(device) y = model.generate(x, max_new_tokens=1) prefered = tokenizer.batch_decode(y, skip_special_tokens=True)[0] return sample["filtered_outputs"] title = "Compare Instruction Models to see which one is more helpful" interface = gr.Interface(fn=process, inputs=[], outputs=[ gr.Textbox(label = "Responses") ], title=title, ) interface.launch(debug=True)