import os.path from data.base_dataset import BaseDataset, get_params, get_transform from PIL import Image import linecache class AlignedDataset(BaseDataset): def initialize(self, opt): self.opt = opt self.root = opt.dataroot self.fine_height=256 self.fine_width=192 self.dataset_size = len(open('demo.txt').readlines()) dir_I = '_img' self.dir_I = os.path.join(opt.dataroot, opt.phase + dir_I) dir_C = '_clothes' self.dir_C = os.path.join(opt.dataroot, opt.phase + dir_C) dir_E = '_edge' self.dir_E = os.path.join(opt.dataroot, opt.phase + dir_E) def __getitem__(self, index): file_path ='demo.txt' im_name, c_name = linecache.getline(file_path, index+1).strip().split() I_path = os.path.join(self.dir_I,im_name) I = Image.open(I_path).convert('RGB') # new line I = I.resize((self.fine_width, self.fine_height)) params = get_params(self.opt, I.size) transform = get_transform(self.opt, params) transform_E = get_transform(self.opt, params, method=Image.NEAREST, normalize=False) I_tensor = transform(I) C_path = os.path.join(self.dir_C,c_name) C = Image.open(C_path).convert('RGB') C_tensor = transform(C) E_path = os.path.join(self.dir_E,c_name) E = Image.open(E_path).convert('L') E_tensor = transform_E(E) input_dict = { 'image': I_tensor,'clothes': C_tensor, 'edge': E_tensor} return input_dict def __len__(self): return self.dataset_size def name(self): return 'AlignedDataset'