import time from options.test_options import TestOptions from data.data_loader_test import CreateDataLoader from models.networks import ResUnetGenerator, load_checkpoint from models.afwm import AFWM import torch.nn as nn import os import numpy as np import torch import cv2 import torch.nn.functional as F opt = TestOptions().parse() start_epoch, epoch_iter = 1, 0 # list human-cloth pairs with open('demo.txt', 'w') as file: lines = [f'3.png {cloth_img_fn}\n' for cloth_img_fn in os.listdir('dataset/test_clothes')] file.writelines(lines) data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) print(dataset_size) warp_model = AFWM(opt, 3) print(warp_model) warp_model.eval() warp_model.cuda() load_checkpoint(warp_model, opt.warp_checkpoint) gen_model = ResUnetGenerator(7, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d) print(gen_model) gen_model.eval() gen_model.cuda() load_checkpoint(gen_model, opt.gen_checkpoint) total_steps = (start_epoch-1) * dataset_size + epoch_iter step = 0 step_per_batch = dataset_size / opt.batchSize for epoch in range(1,2): for i, data in enumerate(dataset, start=epoch_iter): iter_start_time = time.time() total_steps += opt.batchSize epoch_iter += opt.batchSize real_image = data['image'] clothes = data['clothes'] ##edge is extracted from the clothes image with the built-in function in python edge = data['edge'] edge = torch.FloatTensor((edge.detach().numpy() > 0.5).astype(np.int)) clothes = clothes * edge flow_out = warp_model(real_image.cuda(), clothes.cuda()) warped_cloth, last_flow, = flow_out warped_edge = F.grid_sample(edge.cuda(), last_flow.permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros') gen_inputs = torch.cat([real_image.cuda(), warped_cloth, warped_edge], 1) gen_outputs = gen_model(gen_inputs) p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1) p_rendered = torch.tanh(p_rendered) m_composite = torch.sigmoid(m_composite) m_composite = m_composite * warped_edge p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite) path = 'results/' + opt.name os.makedirs(path, exist_ok=True) sub_path = path + '/PFAFN' os.makedirs(sub_path,exist_ok=True) if step % 1 == 0: a = real_image.float().cuda() b= clothes.cuda() c = p_tryon combine = torch.cat([a[0],b[0],c[0]], 2).squeeze() cv_img=(combine.permute(1,2,0).detach().cpu().numpy()+1)/2 rgb=(cv_img*255).astype(np.uint8) bgr=cv2.cvtColor(rgb,cv2.COLOR_RGB2BGR) cv2.imwrite(sub_path+'/'+str(step)+'.jpg',bgr) step += 1 if epoch_iter >= dataset_size: break