import time from options.test_options import TestOptions from data.data_loader_test import CreateDataLoader from models.networks import ResUnetGenerator, load_checkpoint from models.afwm import AFWM import torch.nn as nn import os import numpy as np import torch import cv2 import torch.nn.functional as F import io from PIL import Image from flask import Flask, jsonify, request from tqdm.auto import tqdm app = Flask(__name__) opt = TestOptions().parse() # list human-cloth pairs with open('demo.txt', 'w') as file: lines = [f'input.png {cloth_img_fn}\n' for cloth_img_fn in os.listdir('dataset/test_clothes')] file.writelines(lines) warp_model = AFWM("", 3) warp_model.eval() warp_model.cuda() load_checkpoint(warp_model, 'checkpoints/PFAFN/warp_model_final.pth') gen_model = ResUnetGenerator(7, 4, 5, ngf=64, norm_layer=nn.BatchNorm2d) gen_model.eval() gen_model.cuda() load_checkpoint(gen_model, 'checkpoints/PFAFN/gen_model_final.pth') def save_cloth_transfers(image_bytes): opt_name = 'demo' opt_batchSize = 1 image = Image.open(io.BytesIO(image_bytes)) image.save('dataset/test_img/input.png') data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() dataset_size = len(data_loader) start_epoch, epoch_iter = 1, 0 total_steps = (start_epoch - 1) * dataset_size + epoch_iter step = 0 step_per_batch = dataset_size / opt_batchSize for epoch in range(1, 2): for i, data in tqdm(enumerate(dataset, start=epoch_iter)): iter_start_time = time.time() total_steps += opt_batchSize epoch_iter += opt_batchSize real_image = data['image'] clothes = data['clothes'] ##edge is extracted from the clothes image with the built-in function in python edge = data['edge'] edge = torch.FloatTensor((edge.detach().numpy() > 0.5).astype(np.int)) clothes = clothes * edge flow_out = warp_model(real_image.cuda(), clothes.cuda()) warped_cloth, last_flow, = flow_out warped_edge = F.grid_sample(edge.cuda(), last_flow.permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros') gen_inputs = torch.cat([real_image.cuda(), warped_cloth, warped_edge], 1) gen_outputs = gen_model(gen_inputs) p_rendered, m_composite = torch.split(gen_outputs, [3, 1], 1) p_rendered = torch.tanh(p_rendered) m_composite = torch.sigmoid(m_composite) m_composite = m_composite * warped_edge p_tryon = warped_cloth * m_composite + p_rendered * (1 - m_composite) path = 'results/' + opt_name os.makedirs(path, exist_ok=True) sub_path = path + '/PFAFN' os.makedirs(sub_path, exist_ok=True) if step % 1 == 0: a = real_image.float().cuda() b = clothes.cuda() c = p_tryon combine = torch.cat([a[0], b[0], c[0]], 2).squeeze() cv_img = (combine.permute(1, 2, 0).detach().cpu().numpy() + 1) / 2 rgb = (cv_img * 255).astype(np.uint8) bgr = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR) cv2.imwrite(sub_path + '/' + str(step) + '.jpg', bgr) step += 1 if epoch_iter >= dataset_size: break return True @app.route('/predict') def predict(): if request.method == 'POST': print('#'*100) file = request.files['file'] image_bytes = file.read() save_cloth_transfers(image_bytes=image_bytes) return jsonify({'status': True}) else: return jsonify({'message': "Only accept POST requests"}) if __name__ == '__main__': app.run()