from __future__ import print_function import torch from PIL import Image import numpy as np import os def tensor2im(image_tensor, imtype=np.uint8, normalize=True): if isinstance(image_tensor, list): image_numpy = [] for i in range(len(image_tensor)): image_numpy.append(tensor2im(image_tensor[i], imtype, normalize)) return image_numpy image_numpy = image_tensor.cpu().float().numpy() image_numpy = (image_numpy + 1) / 2.0 image_numpy = np.clip(image_numpy, 0, 1) if image_numpy.shape[2] == 1 or image_numpy.shape[2] > 3: image_numpy = image_numpy[:,:,0] return image_numpy def tensor2label(label_tensor, n_label, imtype=np.uint8): if n_label == 0: return tensor2im(label_tensor, imtype) label_tensor = label_tensor.cpu().float() if label_tensor.size()[0] > 1: label_tensor = label_tensor.max(0, keepdim=True)[1] label_tensor = Colorize(n_label)(label_tensor) label_numpy = label_tensor.numpy() label_numpy = label_numpy / 255.0 return label_numpy def save_image(image_numpy, image_path): image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def mkdirs(paths): if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): if not os.path.exists(path): os.makedirs(path) def uint82bin(n, count=8): """returns the binary of integer n, count refers to amount of bits""" return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)]) def labelcolormap(N): if N == 35: # cityscape cmap = np.array([( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), ( 0, 0, 0), (111, 74, 0), ( 81, 0, 81), (128, 64,128), (244, 35,232), (250,170,160), (230,150,140), ( 70, 70, 70), (102,102,156), (190,153,153), (180,165,180), (150,100,100), (150,120, 90), (153,153,153), (153,153,153), (250,170, 30), (220,220, 0), (107,142, 35), (152,251,152), ( 70,130,180), (220, 20, 60), (255, 0, 0), ( 0, 0,142), ( 0, 0, 70), ( 0, 60,100), ( 0, 0, 90), ( 0, 0,110), ( 0, 80,100), ( 0, 0,230), (119, 11, 32), ( 0, 0,142)], dtype=np.uint8) else: cmap = np.zeros((N, 3), dtype=np.uint8) for i in range(N): r, g, b = 0, 0, 0 id = i for j in range(7): str_id = uint82bin(id) r = r ^ (np.uint8(str_id[-1]) << (7-j)) g = g ^ (np.uint8(str_id[-2]) << (7-j)) b = b ^ (np.uint8(str_id[-3]) << (7-j)) id = id >> 3 cmap[i, 0] = r cmap[i, 1] = g cmap[i, 2] = b return cmap class Colorize(object): def __init__(self, n=35): self.cmap = labelcolormap(n) self.cmap = torch.from_numpy(self.cmap[:n]) def __call__(self, gray_image): size = gray_image.size() color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) for label in range(0, len(self.cmap)): mask = (label == gray_image[0]).cpu() color_image[0][mask] = self.cmap[label][0] color_image[1][mask] = self.cmap[label][1] color_image[2][mask] = self.cmap[label][2] return color_image