import gradio as gr from PIL import Image from transformers import CLIPProcessor, CLIPModel from fastsam import FastSAM, FastSAMPrompt project_path = "." sam_model = FastSAM(f"{project_path}/FastSAM-x.pt") DEVICE = "cpu" sample_images = [f"{project_path}/sample_images/{i}.jpg" for i in range(5)] prediction_image = None sam_prediction_image = None clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") def upload_file(files): file_paths = [file.name for file in files] return file_paths def read_image(path): img = Image.open(path) return img def set_prediction_image(evt: gr.SelectData, gallery): global prediction_image if isinstance(gallery[evt.index], dict): prediction_image = gallery[evt.index]["name"] else: prediction_image = gallery[evt.index][0]["name"] def predict(text): text_classes = text.split(",") text_classes = [sentence.strip() for sentence in text_classes] image = read_image(prediction_image) inputs = clip_processor( text=text_classes, images=image, return_tensors="pt", padding=True, ) outputs = clip_model(**inputs) logits_per_image = ( outputs.logits_per_image ) # this is the image-text similarity score probs = logits_per_image.softmax(dim=1)[0] results = {text_class: prob.item() for text_class, prob in zip(text_classes, probs)} return {output: gr.update(value=results)} def show_hide_sam_text(status): if status == "Text Based": return {sam_input_text: gr.update(visible=True)} return {sam_input_text: gr.update(visible=False)} def set_prediction_image_sam(evt: gr.SelectData, gallery): global sam_prediction_image if isinstance(gallery[evt.index], dict): sam_prediction_image = gallery[evt.index]["name"] else: sam_prediction_image = gallery[evt.index][0]["name"] def sam_predict(radio, text): output_path = f"{project_path}/output/sam_results.jpg" everything_results = sam_model( sam_prediction_image, device=DEVICE, retina_masks=True, imgsz=1024, conf=0.4, iou=0.9, ) prompt_process = FastSAMPrompt( sam_prediction_image, everything_results, device=DEVICE ) ann = prompt_process.everything_prompt() if radio == "Text Based": ann = prompt_process.text_prompt(text=text) prompt_process.plot( annotations=ann, output_path=output_path, ) return {sam_output: gr.update(value=output_path)} with gr.Blocks() as app: gr.Markdown("## FastSAM & CLIP Inference with Gradio") with gr.Tab("FastSAM"): gr.Markdown("### Image Segmentation with FastSAM") gr.Markdown( """Please an image or select one of the sample images. Select either segment everything or text based segmentation. Enter the text if you opt for segment based on text and hit Submit. """ ) with gr.Row(): with gr.Column(): with gr.Box(): with gr.Group(): upload_gallery = gr.Gallery( value=None, label="Uploaded images", show_label=False, elem_id="gallery_upload", columns=5, rows=2, height="auto", object_fit="contain", ) upload_button = gr.UploadButton( "Click to Upload images", file_types=["image"], file_count="multiple", ) upload_button.upload(upload_file, upload_button, upload_gallery) with gr.Group(): sample_gallery = gr.Gallery( value=sample_images, label="Sample images", show_label=False, elem_id="gallery_sample", columns=3, rows=2, height="auto", object_fit="contain", ) upload_gallery.select( set_prediction_image_sam, inputs=[upload_gallery] ) sample_gallery.select( set_prediction_image_sam, inputs=[sample_gallery] ) with gr.Box(): radio = gr.Radio( choices=["Segment Everything", "Text Based"], value="Segment Everything", type="value", label="Select a Segmentation approach", interactive=True, ) sam_input_text = gr.TextArea( label="Segementation Input", placeholder="Please enter some text", interactive=True, visible=False, ) radio.change( show_hide_sam_text, inputs=[radio], outputs=[sam_input_text] ) sam_submit_btn = gr.Button(value="Submit") with gr.Column(): with gr.Box(): sam_output = gr.Image(value=None, label="Segmentation Results") sam_submit_btn.click( sam_predict, inputs=[radio, sam_input_text], outputs=[sam_output] ) with gr.Tab("CLIP"): gr.Markdown("### ERA Session19 - Zero Shot Classification with CLIP") gr.Markdown( "Please an image or select one of the sample images. Type some classification labels separated by comma. For ex: dog, cat" ) with gr.Row(): with gr.Column(): with gr.Box(): with gr.Group(): upload_gallery = gr.Gallery( value=None, label="Uploaded images", show_label=False, elem_id="gallery_upload", columns=5, rows=2, height="auto", object_fit="contain", ) upload_button = gr.UploadButton( "Click to Upload images", file_types=["image"], file_count="multiple", ) upload_button.upload(upload_file, upload_button, upload_gallery) with gr.Group(): sample_gallery = gr.Gallery( value=sample_images, label="Sample images", show_label=False, elem_id="gallery_sample", columns=3, rows=2, height="auto", object_fit="contain", ) upload_gallery.select(set_prediction_image, inputs=[upload_gallery]) sample_gallery.select(set_prediction_image, inputs=[sample_gallery]) with gr.Box(): input_text = gr.TextArea( label="Classification Text", placeholder="Please enter comma separated text", interactive=True, ) submit_btn = gr.Button(value="Submit") with gr.Column(): with gr.Box(): output = gr.Label(value=None, label="Classification Results") submit_btn.click(predict, inputs=[input_text], outputs=[output]) app.launch(debug=True, show_error=True)