{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\panuk\\anaconda3\\envs\\SolutionsInPR\\Lib\\site-packages\\transformers\\tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n", " warnings.warn(\n" ] } ], "source": [ "# Load model directly\n", "from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n", "\n", "tokenizer = AutoTokenizer.from_pretrained(\"facebook/bart-large-cnn\")\n", "model = AutoModelForSeq2SeqLM.from_pretrained(\"facebook/bart-large-cnn\")" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "BartForConditionalGeneration(\n", " (model): BartModel(\n", " (shared): BartScaledWordEmbedding(50264, 1024, padding_idx=1)\n", " (encoder): BartEncoder(\n", " (embed_tokens): BartScaledWordEmbedding(50264, 1024, padding_idx=1)\n", " (embed_positions): BartLearnedPositionalEmbedding(1026, 1024)\n", " (layers): ModuleList(\n", " (0-11): 12 x BartEncoderLayer(\n", " (self_attn): BartSdpaAttention(\n", " (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " )\n", " (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " (activation_fn): GELUActivation()\n", " (fc1): Linear(in_features=1024, out_features=4096, bias=True)\n", " (fc2): Linear(in_features=4096, out_features=1024, bias=True)\n", " (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " )\n", " )\n", " (layernorm_embedding): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " )\n", " (decoder): BartDecoder(\n", " (embed_tokens): BartScaledWordEmbedding(50264, 1024, padding_idx=1)\n", " (embed_positions): BartLearnedPositionalEmbedding(1026, 1024)\n", " (layers): ModuleList(\n", " (0-11): 12 x BartDecoderLayer(\n", " (self_attn): BartSdpaAttention(\n", " (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " )\n", " (activation_fn): GELUActivation()\n", " (self_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " (encoder_attn): BartSdpaAttention(\n", " (k_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (v_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (q_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " (out_proj): Linear(in_features=1024, out_features=1024, bias=True)\n", " )\n", " (encoder_attn_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " (fc1): Linear(in_features=1024, out_features=4096, bias=True)\n", " (fc2): Linear(in_features=4096, out_features=1024, bias=True)\n", " (final_layer_norm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " )\n", " )\n", " (layernorm_embedding): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)\n", " )\n", " )\n", " (lm_head): Linear(in_features=1024, out_features=50264, bias=False)\n", ")" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", "model.to(device)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7861\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "c:\\Users\\panuk\\anaconda3\\envs\\SolutionsInPR\\Lib\\site-packages\\gradio\\analytics.py:106: UserWarning: IMPORTANT: You are using gradio version 4.44.1, however version 5.0.1 is available, please upgrade. \n", "--------\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Running on public URL: https://1fe44b84e4bdd88e83.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "