import gradio as gr from PIL import Image from dataclasses import dataclass import random from transformers import pipeline from huggingface_hub import InferenceClient, login import os @dataclass class PatientMetadata: age: int smoking_status: str family_history: bool menopause_status: str previous_mammogram: bool breast_density: str hormone_therapy: bool class SimplifiedBreastAnalyzer: def __init__(self, hf_token: str): """Initialize the analyzer with models.""" print("Initializing system...") # Login to Hugging Face login(token=hf_token) # Initialize vision pipelines for tumor detection and size classification self.tumor_classifier = pipeline( "image-classification", model="SIATCN/vit_tumor_classifier", device="cpu" ) self.size_classifier = pipeline( "image-classification", model="SIATCN/vit_tumor_radius_detection_finetuned", device="cpu" ) # Initialize Mistral client for report generation self.report_generator = InferenceClient( model="mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token ) print("Initialization complete!") def _generate_synthetic_metadata(self) -> PatientMetadata: """Generate realistic patient metadata for breast cancer screening.""" age = random.randint(40, 75) smoking_status = random.choice(["Never Smoker", "Former Smoker", "Current Smoker"]) family_history = random.choice([True, False]) menopause_status = "Post-menopausal" if age > 50 else "Pre-menopausal" previous_mammogram = random.choice([True, False]) breast_density = random.choice([ "A: Almost entirely fatty", "B: Scattered fibroglandular", "C: Heterogeneously dense", "D: Extremely dense" ]) hormone_therapy = random.choice([True, False]) return PatientMetadata( age=age, smoking_status=smoking_status, family_history=family_history, menopause_status=menopause_status, previous_mammogram=previous_mammogram, breast_density=breast_density, hormone_therapy=hormone_therapy ) def _process_image(self, image: Image.Image) -> Image.Image: """Process input image for model consumption.""" if image.mode != 'RGB': image = image.convert('RGB') return image.resize((224, 224)) def _generate_medical_report(self, has_tumor: bool, tumor_size: str, metadata: PatientMetadata) -> str: """Generate a medical report using Mistral.""" prompt = f"""[INST] Generate a detailed medical report for this breast imaging scan: Scan Results: - Finding: {'Abnormal area detected' if has_tumor else 'No abnormalities detected'} {f'- Size of abnormal area: {tumor_size} cm' if has_tumor else ''} Patient Information: - Age: {metadata.age} years - Risk factors: {', '.join([ 'family history of breast cancer' if metadata.family_history else '', f'{metadata.smoking_status.lower()}', 'currently on hormone therapy' if metadata.hormone_therapy else '' ]).strip(', ')} - Breast density: {metadata.breast_density} - Previous mammogram: {'Yes' if metadata.previous_mammogram else 'No'} - Menopausal status: {metadata.menopause_status} Please provide: 1. A clear interpretation of the findings 2. A specific recommendation for next steps based on the findings and risk factors 3. Recommended follow-up timeline [/INST]""" # Generate response using Mistral response = self.report_generator.text_generation( prompt, max_new_tokens=512, temperature=0.3, top_p=0.9, repetition_penalty=1.1, do_sample=True, seed=42 ) return f"FINDINGS AND RECOMMENDATIONS:\n{response}" def analyze(self, image: Image.Image) -> str: """Main analysis pipeline.""" try: processed_image = self._process_image(image) metadata = self._generate_synthetic_metadata() # Detect tumor tumor_result = self.tumor_classifier(processed_image) has_tumor = tumor_result[0]['label'] == 'tumor' # Measure size if tumor detected size_result = self.size_classifier(processed_image) tumor_size = size_result[0]['label'].replace('tumor-', '') # Generate report report = self._generate_medical_report(has_tumor, tumor_size, metadata) return f"""SCAN RESULTS: {'⚠️ Abnormal area detected' if has_tumor else '✓ No abnormalities detected'} {f'Size of abnormal area: {tumor_size} cm' if has_tumor else ''} PATIENT INFORMATION: • Age: {metadata.age} years • Risk Factors: {', '.join([ 'family history of breast cancer' if metadata.family_history else '', metadata.smoking_status.lower(), 'currently on hormone therapy' if metadata.hormone_therapy else '' ]).strip(', ')} • Breast Density: {metadata.breast_density} • Previous Mammogram: {'Yes' if metadata.previous_mammogram else 'No'} • Menopausal Status: {metadata.menopause_status} {report}""" except Exception as e: import traceback return f"Error during analysis: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" def create_interface(hf_token: str) -> gr.Interface: """Create the Gradio interface.""" analyzer = SimplifiedBreastAnalyzer(hf_token) interface = gr.Interface( fn=analyzer.analyze, inputs=[ gr.Image(type="pil", label="Upload Breast Image for Analysis") ], outputs=[ gr.Textbox(label="Analysis Results", lines=20) ], title="Breast Imaging Analysis System", description="""Upload a breast image for comprehensive analysis. The system will: 1. Detect the presence of tumors 2. Classify tumor size if present 3. Generate a detailed medical report with recommendations""", ) return interface if __name__ == "__main__": print("Starting application...") # Load HuggingFace token from secrets HF_TOKEN = os.environ.get("HUGGINGFACE_TOKEN") if not HF_TOKEN: raise ValueError("Please set HUGGINGFACE_TOKEN environment variable") interface = create_interface(HF_TOKEN) # Modified launch parameters for Spaces interface.launch( debug=True, server_name="0.0.0.0", # Required for Spaces server_port=7860, # Standard port for Spaces share=False # Disable sharing as it's not needed on Spaces )