import gradio as gr import os import torch os.system('git clone https://github.com/WongKinYiu/yolov7') def detect(inp): os.system('python ./yolov7/detect.py --weights best.pt --conf 0.25 --img-size 640 --source f{inp} --project ./yolov7/runs/detect ') otp=inp.split('/')[2] return f"./yolov7/runs/detect/exp/*" #f"./yolov7/runs/detect/exp/{otp}" def custom(path_or_model='path/to/model.pt', autoshape=True): """custom mode Arguments (3 options): path_or_model (str): 'path/to/model.pt' path_or_model (dict): torch.load('path/to/model.pt') path_or_model (nn.Module): torch.load('path/to/model.pt')['model'] Returns: pytorch model """ model = torch.load(path_or_model) if isinstance(path_or_model, str) else path_or_model # load checkpoint if isinstance(model, dict): model = model['ema' if model.get('ema') else 'model'] # load model hub_model = Model(model.yaml).to(next(model.parameters()).device) # create hub_model.load_state_dict(model.float().state_dict()) # load state_dict hub_model.names = model.names # class names if autoshape: hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available return hub_model.to(device) model = custom(path_or_model='best.pt') def detect1(inp): #g = (size / max(inp.size)) #gain #im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(inp,size=640) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.imgs[0]) inp = gr.inputs.Image(type="filepath", label="Input") #output=gr.outputs.Image(type="pil", label="Output Image") output = gr.outputs.Image(type="filepath", label="Output") #.outputs.Textbox() io=gr.Interface(fn=detect1, inputs=inp, outputs=output, title='Pot Hole Detection With Custom YOLOv7 ', #examples=[["Examples/img-300_jpg.rf.6b7b035dff1cda092ce3dc22be8d0135.jpg"]] ) #,examples=["Examples/img-300_jpg.rf.6b7b035dff1cda092ce3dc22be8d0135.jpg"] io.launch(debug=True,share=False)