import gradio as gr import os import torch from PIL import Image #Repo.clone_from("https://github.com/ultralytics/yolov5", "./content") #subprocess.run(["git","clone", "https://github.com/ultralytics/yolov5"]) '''gdd.download_file_from_google_drive(file_id='1xJcr1zuuoC6bbu6wGvmyw5dl0mUEi-Jn', dest_path='content/train_data.zip', unzip=True) gdd.download_file_from_google_drive(file_id='1UJ9Y2mw2KBRY0tO-TnBs5RALLya6C2dW', dest_path='content/video.zip', unzip=True) ''' #subprocess.run(["mv","content/custom_data.yaml","./yolov5/data"]) def find(name, path): for root, dirs, files in os.walk(path): if name in files: return os.path.join(root, name) model = torch.hub.load('ultralytics/yolov5', 'custom', path='Content/best.pt') model.conf = 0.45 #, force_reload=True def detect(inp): #g = (size / max(inp.size)) # gain #im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(inp) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.imgs[0]) inp = gr.inputs.Image(type='pil', label="Original Image") output = gr.outputs.Image(type="pil", label="Output Image") io=gr.Interface(fn=detect, inputs=inp, outputs=output, title='Party Symbol Detection',examples=['Content/4.jpg']) io.launch(debug=True,share=True)