import gradio as gr import whisper # Initialize the Whisper model model = whisper.load_model("large") def transcribe(audio_file): # Whisper expects a filepath, so we use the 'filepath' type in gr.Audio # audio_file now directly contains the path to the uploaded file audio = whisper.load_audio(audio_file) audio = whisper.pad_or_trim(audio) mel = whisper.log_mel_spectrogram(audio).to(model.device) options = whisper.DecodingOptions() result = whisper.decode(model, mel, options) return result.text # Create the Gradio interface iface = gr.Interface( fn=transcribe, inputs=gr.Audio(label="Upload your audio file", type="filepath"), outputs="text", title="Whisper ASR", description="Upload an audio file and it will be transcribed using OpenAI's Whisper model." ) # Launch the app if __name__ == "__main__": iface.launch()