import gradio as gr
import random
import time
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import LLMChain
from langchain.chains.retrieval_qa.base import RetrievalQA
from langchain.chains.question_answering import load_qa_chain
import pinecone
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#OPENAI_API_KEY = ""
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY", "")
OPENAI_TEMP = 0
PINECONE_KEY = os.environ["PINECONE_KEY"]
PINECONE_ENV = "asia-northeast1-gcp"
PINECONE_INDEX = "3gpp"
# return top-k text chunk from vector store
VECTOR_SEARCH_TOP_K = 10
# LLM input history length
LLM_HISTORY_LEN = 3
BUTTON_MIN_WIDTH = 150
STATUS_NOK = "404-MODEL UNREADY-red"
STATUS_OK = "200-MODEL LOADED-brightgreen"
def get_status(inputs) -> str:
return f""""""
MODEL_NULL = get_status(STATUS_NOK)
MODEL_DONE = get_status(STATUS_OK)
MODEL_WARNING = "Please paste your OpenAI API Key from openai.com and press 'Enter' to initialize this application!"
webui_title = """
# 3GPP OpenAI Chatbot for Hackathon Demo
"""
init_message = """Welcome to use 3GPP Chatbot
This demo toolkit is based on OpenAI with langchain and pinecone
Please insert your question and click 'Submit'
"""
def init_model(api_key):
try:
if api_key and api_key.startswith("sk-") and len(api_key) > 50:
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
pinecone.init(api_key = PINECONE_KEY,
environment = PINECONE_ENV)
#llm = OpenAI(temperature=OPENAI_TEMP, model_name="gpt-3.5-turbo-0301")
llm = ChatOpenAI(temperature = OPENAI_TEMP,
openai_api_key = api_key)
chain = load_qa_chain(llm, chain_type="stuff")
db = Pinecone.from_existing_index(index_name = PINECONE_INDEX,
embedding = embeddings)
return api_key, MODEL_DONE, chain, db, None
else:
return None,MODEL_NULL,None,None,None
except Exception as e:
print(e)
return None,MODEL_NULL,None,None,None
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human: {human}\nAI: {ai}")
return "\n".join(res)
def user(user_message, history):
return "", history+[[user_message, None]]
def bot(box_message, ref_message, chain, db, top_k):
# bot_message = random.choice(["Yes", "No"])
# 0 is user question, 1 is bot response
question = box_message[-1][0]
history = box_message[:-1]
if (not chain) or (not db):
box_message[-1][1] = MODEL_WARNING
return box_message, "", ""
if not ref_message:
ref_message = question
details = f"Q: {question}"
else:
details = f"Q: {question}\nR: {ref_message}"
docsearch = db.as_retriever(search_kwargs={'k':top_k})
docs = docsearch.get_relevant_documents(ref_message)
all_output = chain({"input_documents": docs,
"question": question,
"chat_history": get_chat_history(history)})
bot_message = all_output['output_text']
source = "".join([f""" {doc.metadata["source"]}
{doc.page_content}
""" for i, doc in enumerate(docs)])
#print(source)
box_message[-1][1] = bot_message
return box_message, "", [[details, source]]
with gr.Blocks(css=""".bigbox {
min-height:200px;
}""") as demo:
llm_chain = gr.State()
vector_db = gr.State()
gr.Markdown(webui_title)
gr.Markdown(init_message)
with gr.Row():
with gr.Column(scale=9):
api_textbox = gr.Textbox(
label = "OpenAI API Key",
value = OPENAI_API_KEY,
placeholder = "Paste Your OpenAI API Key (sk-...) and Hit ENTER",
lines=1,
type='password')
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
init = gr.Button("Initialize Model").style(full_width=False)
model_statusbox = gr.HTML(MODEL_NULL)
with gr.Tab("3GPP-Chatbot"):
with gr.Row():
with gr.Column(scale=10):
chatbot = gr.Chatbot(elem_classes="bigbox")
'''
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
temp = gr.Slider(0,
2,
value=OPENAI_TEMP,
step=0.1,
label="temperature",
interactive=True)
init = gr.Button("Init")
'''
with gr.Row():
with gr.Column(scale=10):
query = gr.Textbox(label="Question:",
lines=2)
ref = gr.Textbox(label="Reference(optional):")
with gr.Column(scale=1, min_width=BUTTON_MIN_WIDTH):
clear = gr.Button("Clear")
submit = gr.Button("Submit",variant="primary")
with gr.Tab("Details"):
top_k = gr.Slider(1,
20,
value=VECTOR_SEARCH_TOP_K,
step=1,
label="Vector similarity top_k",
interactive=True)
detail_panel = gr.Chatbot(label="Related Docs")
api_textbox.submit(init_model,
api_textbox,
[api_textbox, model_statusbox, llm_chain, vector_db, chatbot])
init.click(init_model,
api_textbox,
[api_textbox, model_statusbox, llm_chain, vector_db, chatbot])
submit.click(user,
[query, chatbot],
[query, chatbot],
queue=False).then(
bot,
[chatbot, ref, llm_chain, vector_db, top_k],
[chatbot, ref, detail_panel]
)
clear.click(lambda: (None,None,None), None, [query, ref, chatbot], queue=False)
if __name__ == "__main__":
demo.launch(share=False, inbrowser=True)