# DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2105.02446) [![GitHub Stars](https://img.shields.io/github/stars/MoonInTheRiver/DiffSinger?style=social)](https://github.com/MoonInTheRiver/DiffSinger) [![downloads](https://img.shields.io/github/downloads/MoonInTheRiver/DiffSinger/total.svg)](https://github.com/MoonInTheRiver/DiffSinger/releases) | [![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-blue)](https://huggingface.co/spaces/NATSpeech/DiffSpeech) | [English README](../README.md) 本仓库包含了我们的AAAI-2022 [论文](https://arxiv.org/abs/2105.02446)中提出的DiffSpeech (用于语音合成) 与 DiffSinger (用于歌声合成) 的官方Pytorch实现。
DiffSinger/DiffSpeech训练阶段 DiffSinger/DiffSpeech推理阶段
Training Inference
:tada: :tada: :tada: **一些重要更新**: - Mar.2, 2022: [MIDI-新版](README-SVS-opencpop-e2e.md): 重大更新 :sparkles: - Mar.1, 2022: [NeuralSVB](https://github.com/MoonInTheRiver/NeuralSVB), 为了歌声美化任务的代码,开源了 :sparkles: :sparkles: :sparkles: . - Feb.13, 2022: [NATSpeech](https://github.com/NATSpeech/NATSpeech), 一个升级后的代码框架, 包含了DiffSpeech和我们NeurIPS-2021的工作[PortaSpeech](https://openreview.net/forum?id=xmJsuh8xlq) 已经开源! :sparkles: :sparkles: :sparkles:. - Jan.29, 2022: 支持了[MIDI-旧版](README-SVS-opencpop-cascade.md) 版本的歌声合成系统. - Jan.13, 2022: 支持了歌声合成系统, 开源了PopCS数据集. - Dec.19, 2021: 支持了语音合成系统. [HuggingFace🤗 Demo](https://huggingface.co/spaces/NATSpeech/DiffSpeech) :rocket: **新闻**: - Feb.24, 2022: 我们的新工作`NeuralSVB` 被 ACL-2022 接收 [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2202.13277). [音频演示](https://neuralsvb.github.io). - Dec.01, 2021: DiffSinger被AAAI-2022接收. - Sep.29, 2021: 我们的新工作`PortaSpeech: Portable and High-Quality Generative Text-to-Speech` 被NeurIPS-2021接收 [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2109.15166) . - May.06, 2021: 我们把这篇DiffSinger提交到了公开论文网站: Arxiv [![arXiv](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2105.02446). ## 安装依赖 ```sh conda create -n your_env_name python=3.8 source activate your_env_name pip install -r requirements_2080.txt (GPU 2080Ti, CUDA 10.2) or pip install -r requirements_3090.txt (GPU 3090, CUDA 11.4) ``` ## DiffSpeech (语音合成的版本) ### 1. 准备工作 #### 数据准备 a) 下载并解压 [LJ Speech dataset](https://keithito.com/LJ-Speech-Dataset/), 创建软链接: `ln -s /xxx/LJSpeech-1.1/ data/raw/` b) 下载并解压 [我们用MFA预处理好的对齐](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/mfa_outputs.tar): `tar -xvf mfa_outputs.tar; mv mfa_outputs data/processed/ljspeech/` c) 按照如下脚本给数据集打包,打包后的二进制文件用于后续的训练和推理. ```sh export PYTHONPATH=. CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config configs/tts/lj/fs2.yaml # `data/binary/ljspeech` will be generated. ``` #### 声码器准备 我们提供了[HifiGAN](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0414_hifi_lj_1.zip)声码器的预训练模型. 请在训练声学模型前,先把声码器文件解压到`checkpoints`里。 ### 2. 训练样例 首先你需要一个预训练好的FastSpeech2存档点. 你可以用[我们预训练好的模型](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/fs2_lj_1.zip), 或者跑下面这个指令从零开始训练FastSpeech2: ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config configs/tts/lj/fs2.yaml --exp_name fs2_lj_1 --reset ``` 然后为了训练DiffSpeech, 运行: ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/lj_ds_beta6.yaml --exp_name lj_ds_beta6_1213 --reset ``` 记得针对你的路径修改`usr/configs/lj_ds_beta6.yaml`里"fs2_ckpt"这个参数. ### 3. 推理样例 ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/lj_ds_beta6.yaml --exp_name lj_ds_beta6_1213 --reset --infer ``` 我们也提供了: - [DiffSpeech](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/lj_ds_beta6_1213.zip)的预训练模型; - [FastSpeech 2](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/fs2_lj_1.zip)的预训练模型, 这是为了DiffSpeech里的浅扩散机制; 记得把预训练模型放在 `checkpoints` 目录. ## DiffSinger (歌声合成的版本) ### 0. 数据获取 - 见 [申请表](https://github.com/MoonInTheRiver/DiffSinger/blob/master/resources/apply_form.md). - 数据集 [预览](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/popcs_preview.zip). ### 1. Preparation #### 数据准备 a) 下载并解压PopCS, 创建软链接: `ln -s /xxx/popcs/ data/processed/popcs` b) 按照如下脚本给数据集打包,打包后的二进制文件用于后续的训练和推理. ```sh export PYTHONPATH=. CUDA_VISIBLE_DEVICES=0 python data_gen/tts/bin/binarize.py --config usr/configs/popcs_ds_beta6.yaml # `data/binary/popcs-pmf0` 会生成出来. ``` #### 声码器准备 我们提供了[HifiGAN-Singing](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/0109_hifigan_bigpopcs_hop128.zip)的预训练模型, 它专门为了歌声合成系统设计, 采用了NSF的技术。 请在训练声学模型前,先把声码器文件解压到`checkpoints`里。 (更新: 你也可以将我们提供的[训练更多步数的存档点](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/model_ckpt_steps_1512000.ckpt)放到声码器的文件夹里) 这个声码器是在大约70小时的较大数据集上训练的, 可以被认为是一个通用声码器。 ### 2. 训练样例 首先你需要一个预训练好的FFT-Singer. 你可以用[我们预训练好的模型](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/popcs_fs2_pmf0_1230.zip), 或者用如下脚本从零训练FFT-Singer: ```sh # First, train fft-singer; CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_fs2.yaml --exp_name popcs_fs2_pmf0_1230 --reset # Then, infer fft-singer; CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_fs2.yaml --exp_name popcs_fs2_pmf0_1230 --reset --infer ``` 然后, 为了训练DiffSinger, 运行: ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_ds_beta6_offline.yaml --exp_name popcs_ds_beta6_offline_pmf0_1230 --reset ``` 记得针对你的路径修改`usr/configs/popcs_ds_beta6_offline.yaml`里"fs2_ckpt"这个参数. ### 3. 推理样例 ```sh CUDA_VISIBLE_DEVICES=0 python tasks/run.py --config usr/configs/popcs_ds_beta6_offline.yaml --exp_name popcs_ds_beta6_offline_pmf0_1230 --reset --infer ``` 我们也提供了: - [DiffSinger](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/popcs_ds_beta6_offline_pmf0_1230.zip)的预训练模型; - [FFT-Singer](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/popcs_fs2_pmf0_1230.zip)的预训练模型, 这是为了DiffSinger里的浅扩散机制; 记得把预训练模型放在 `checkpoints` 目录. *请注意:* -*我们原始论文中的PWG版本声码器已投入商业使用,因此我们提供此HifiGAN版本声码器作为替代品。* -*我们这篇论文假设提供真实的F0来进行实验,如[1][2][3]等前作所做的那样,重点在频谱建模上,而非F0曲线的预测。如果你想对MIDI数据进行实验,从MIDI和歌词预测F0曲线(显式或隐式),请查看文档[MIDI-old-version](README-SVS-opencpop-cascade.md) 或 [MIDI-new-version](README-SVS-opencpop-e2e.md)。目前已经支持的MIDI数据集有: Opencpop* [1] Adversarially trained multi-singer sequence-to-sequence singing synthesizer. Interspeech 2020. [2] SEQUENCE-TO-SEQUENCE SINGING SYNTHESIS USING THE FEED-FORWARD TRANSFORMER. ICASSP 2020. [3] DeepSinger : Singing Voice Synthesis with Data Mined From the Web. KDD 2020. ## Tensorboard ```sh tensorboard --logdir_spec exp_name ```
Tensorboard
## Mel 可视化 沿着纵轴, DiffSpeech: [0-80]; FastSpeech2: [80-160].
DiffSpeech vs. FastSpeech 2
DiffSpeech-vs-FastSpeech2
DiffSpeech-vs-FastSpeech2
DiffSpeech-vs-FastSpeech2
## Audio Demos 音频样本可以看我们的[样例页](https://diffsinger.github.io/). 我们也放了部分由DiffSpeech+HifiGAN (标记为[P]) 和 GTmel+HifiGAN (标记为[G]) 生成的测试集音频样例在:[resources/demos_1213](../resources/demos_1213). (对应这个预训练参数:[DiffSpeech](https://github.com/MoonInTheRiver/DiffSinger/releases/download/pretrain-model/lj_ds_beta6_1213.zip)) --- :rocket: :rocket: :rocket: **更新:** 新生成的歌声样例在:[resources/demos_0112](../resources/demos_0112). ## Citation 如果本仓库对你的研究和工作有用,请引用以下论文: @article{liu2021diffsinger, title={Diffsinger: Singing voice synthesis via shallow diffusion mechanism}, author={Liu, Jinglin and Li, Chengxi and Ren, Yi and Chen, Feiyang and Liu, Peng and Zhao, Zhou}, journal={arXiv preprint arXiv:2105.02446}, volume={2}, year={2021}} ## 鸣谢 我们的代码基于如下仓库: * [denoising-diffusion-pytorch](https://github.com/lucidrains/denoising-diffusion-pytorch) * [PyTorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) * [ParallelWaveGAN](https://github.com/kan-bayashi/ParallelWaveGAN) * [HifiGAN](https://github.com/jik876/hifi-gan) * [espnet](https://github.com/espnet/espnet) * [DiffWave](https://github.com/lmnt-com/diffwave)