from PIL import Image import matplotlib.pyplot as plt import torch from torchvision import transforms from transformers import AutoModelForImageSegmentation # Load the model model = AutoModelForImageSegmentation.from_pretrained('briaai/RMBG-2.0', trust_remote_code=True) torch.set_float32_matmul_precision('high') model.eval() # Data settings image_size = (1024, 1024) transform_image = transforms.Compose([ transforms.Resize(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Get the image file path from the user input_image_path = input("Please enter the file path of the image: ") # Open and convert the image try: im = Image.open(input_image_path) rgb_im = im.convert('RGB') except FileNotFoundError: print(f"Error: The file at {input_image_path} was not found.") exit() # Transform the image input_images = transform_image(rgb_im).unsqueeze(0) # Prediction with torch.no_grad(): preds = model(input_images)[-1].sigmoid().cpu() # Process the prediction pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(rgb_im.size) rgb_im.putalpha(mask) # Save the result output_image_path = "no_bg_image.png" rgb_im.save(output_image_path) print(f"Image with background removed saved as {output_image_path}")