#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main import gradio as gr from openai import OpenAI import os ACCESS_TOKEN = os.getenv("myHFtoken") print("Access token loaded.") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("Client initialized.") # Pre-set system prompts SYSTEM_PROMPTS = { "General Assistant": "You are a helpful, respectful and honest assistant. Always provide accurate information and admit when you're not sure about something.", "Code Helper": "You are a programming assistant. Help users with coding questions, debugging, and best practices. Provide clear explanations and code examples when appropriate.", "Creative Writer": "You are a creative writing assistant. Help users with storytelling, character development, and creative writing techniques. Be imaginative and encouraging." } def respond( message, history: list[tuple[str, str]], preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name, ): print(f"Received message: {message}") print(f"History: {history}") # Use custom prompt if provided, otherwise use selected preset system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt] print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Selected model: {model_name}") messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) print(f"Added user message to context: {val[0]}") if val[1]: messages.append({"role": "assistant", "content": val[1]}) print(f"Added assistant message to context: {val[1]}") messages.append({"role": "user", "content": message}) response = "" print("Sending request to OpenAI API.") for message in client.chat.completions.create( model=model_name, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content print(f"Received token: {token}") response += token yield response print("Completed response generation.") chatbot = gr.Chatbot(height=400) print("Chatbot interface created.") models = [ "PowerInfer/SmallThinker-3B-Preview", "Qwen/QwQ-32B-Preview", "Qwen/Qwen2.5-Coder-32B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "microsoft/Phi-3-mini-128k-instruct", ] with gr.Blocks() as demo: gr.Markdown("# LLM Test") with gr.Row(): # Model selection at the top model_dropdown = gr.Dropdown( choices=models, value=models[0], label="Select Model:" ) # Chatbot interface chat_interface = gr.ChatInterface( respond, additional_inputs=[ # Prompt selections gr.Dropdown( choices=list(SYSTEM_PROMPTS.keys()), value=list(SYSTEM_PROMPTS.keys())[0], label="Select System Prompt:" ), gr.Textbox( value="", label="Custom System Prompt (leaves blank to use preset):", lines=2 ), # Other parameters gr.Slider( minimum=1, maximum=4096, value=1024, step=1, label="Max new tokens:" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature:" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P:" ), model_dropdown, ], fill_height=True, chatbot=chatbot, ) print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch()