import streamlit as st import numpy as np import torch import shap import matplotlib.pyplot as plt import joblib import pandas as pd # Load scalers and model @st.cache_resource def load_resources(): scaler_X = joblib.load("scaler_X_DS.joblib") scaler_y = joblib.load("scaler_y_DS.joblib") model = torch.jit.load("scripted_model_DS.pt") model.eval() return scaler_X, scaler_y, model # Create a wrapper function for SHAP def model_wrapper(X): with torch.no_grad(): X_tensor = torch.tensor(X, dtype=torch.float32) output = model(X_tensor).numpy() return scaler_y.inverse_transform(output) # Streamlit app st.title("Dynamic Stability Predictor") # Load resources scaler_X, scaler_y, model = load_resources() # Define feature names and default values feature_names = [ "25", "19", "12.5", "9.5", "4.75", "2.36", "1.18", "0.6", "0.3", "0.15", "0.075", "CA", "FA", "type" ] default_values = [100, 100, 81.593, 68.395, 49.318, 29.283, 17.261, 14.257, 6.041, 3.000, 2.115, 0.600, 0.350, 1.0] # Input features st.sidebar.header("Input Features") input_features = {} for feature, default_value in zip(feature_names, default_values): if feature == "type": type_option = st.sidebar.selectbox(f"Enter {feature}", options=["1 - Limestone", "2 - Basalt"], index=0) input_features[feature] = 1.0 if type_option == "1 - Limestone" else 2.0 else: input_features[feature] = st.sidebar.number_input(f"Enter {feature}", value=default_value) # Create input array input_array = np.array([input_features[feature] for feature in feature_names]).reshape(1, -1) input_scaled = scaler_X.transform(input_array) # Make prediction with torch.no_grad(): prediction = model(torch.tensor(input_scaled, dtype=torch.float32)).numpy() prediction_unscaled = scaler_y.inverse_transform(prediction) st.write(f"Predicted Dynamic Stability: {prediction_unscaled[0][0]:.2f} pass/mm") # SHAP explanation if st.button("Explain Prediction"): # Generate some random background data for SHAP background_data = np.random.randn(100, 14) # 100 samples, 14 features background_data_scaled = scaler_X.transform(background_data) explainer = shap.KernelExplainer(model_wrapper, background_data_scaled) shap_values = explainer.shap_values(input_scaled) shap_values_single = shap_values[0].flatten() expected_value = explainer.expected_value[0] feature_values = [f"{x:.1f}" for x in input_array[0]] explanation = shap.Explanation( values=shap_values_single, base_values=expected_value, data=feature_values, feature_names=feature_names ) fig, ax = plt.subplots(figsize=(10, 6)) shap.plots.waterfall(explanation, show=False) st.pyplot(fig) st.write(f"Base value (unscaled): {([[expected_value]])[0][0]:.2f} pass/mm") st.write(f"Output value (unscaled): {prediction_unscaled[0][0]:.2f} pass/mm") st.write("\nFeature contributions (unscaled):") feature_contributions = pd.DataFrame({ 'Contribution': shap_values_single }, index=feature_names) feature_contributions['Contribution'] = feature_contributions['Contribution'].round(4) st.table(feature_contributions)