import streamlit as st import torch # <-- Add this import from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline # Load the model and tokenizer in full precision and ensure it's on CPU model = AutoModelForCausalLM.from_pretrained("PAIXAI/Astrid-1B") tokenizer = AutoTokenizer.from_pretrained("PAIXAI/Astrid-1B") # Initialize the pipeline with the model and tokenizer to run on CPU generate_text = TextGenerationPipeline(model=model, tokenizer=tokenizer, device=-1) # -1 forces CPU usage # Streamlit UI st.title("Astrid-1B Chatbot") st.write("Test the Astrid-1B chatbot from Hugging Face!") user_input = st.text_input("Enter your question:") if user_input: try: response = generate_text(user_input, min_new_tokens=2, max_new_tokens=256, do_sample=False, num_beams=1, temperature=0.3, repetition_penalty=1.2, renormalize_logits=True) st.write("Response:", response[0]["generated_text"]) except Exception as e: st.write("Error:", str(e)) st.write("Note: This is a simple UI for demonstration purposes. Ensure you have the required libraries installed and adjust the model parameters as needed.")