from math import pi, log import torch from torch.nn import Module, ModuleList from torch.cuda.amp import autocast from torch import nn, einsum, broadcast_tensors, Tensor from einops import rearrange, repeat from beartype import beartype from beartype.typing import Literal, Union, Optional # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # broadcat, as tortoise-tts was using it def broadcat(tensors, dim = -1): broadcasted_tensors = broadcast_tensors(*tensors) return torch.cat(broadcasted_tensors, dim = dim) # rotary embedding helper functions def rotate_half(x): x = rearrange(x, '... (d r) -> ... d r', r = 2) x1, x2 = x.unbind(dim = -1) x = torch.stack((-x2, x1), dim = -1) return rearrange(x, '... d r -> ... (d r)') @autocast(enabled = False) def apply_rotary_emb(freqs, t, start_index = 0, scale = 1., seq_dim = -2): if t.ndim == 3: seq_len = t.shape[seq_dim] freqs = freqs[-seq_len:].to(t) rot_dim = freqs.shape[-1] end_index = start_index + rot_dim assert rot_dim <= t.shape[-1], f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in all the positions {rot_dim}' t_left, t, t_right = t[..., :start_index], t[..., start_index:end_index], t[..., end_index:] t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) return torch.cat((t_left, t, t_right), dim = -1) # learned rotation helpers def apply_learned_rotations(rotations, t, start_index = 0, freq_ranges = None): if exists(freq_ranges): rotations = einsum('..., f -> ... f', rotations, freq_ranges) rotations = rearrange(rotations, '... r f -> ... (r f)') rotations = repeat(rotations, '... n -> ... (n r)', r = 2) return apply_rotary_emb(rotations, t, start_index = start_index) # classes class RotaryEmbedding(Module): @beartype def __init__( self, dim, custom_freqs: Optional[Tensor] = None, freqs_for: Union[ Literal['lang'], Literal['pixel'], Literal['constant'] ] = 'lang', theta = 10000, max_freq = 10, num_freqs = 1, learned_freq = False, use_xpos = False, xpos_scale_base = 512, interpolate_factor = 1., theta_rescale_factor = 1., seq_before_head_dim = False ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ theta *= theta_rescale_factor ** (dim / (dim - 2)) self.freqs_for = freqs_for if exists(custom_freqs): freqs = custom_freqs elif freqs_for == 'lang': freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim)) elif freqs_for == 'pixel': freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi elif freqs_for == 'constant': freqs = torch.ones(num_freqs).float() self.tmp_store('cached_freqs', None) self.tmp_store('cached_scales', None) self.freqs = nn.Parameter(freqs, requires_grad = learned_freq) self.learned_freq = learned_freq # dummy for device self.tmp_store('dummy', torch.tensor(0)) # default sequence dimension self.seq_before_head_dim = seq_before_head_dim self.default_seq_dim = -3 if seq_before_head_dim else -2 # interpolation factors assert interpolate_factor >= 1. self.interpolate_factor = interpolate_factor # xpos self.use_xpos = use_xpos if not use_xpos: self.tmp_store('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = xpos_scale_base self.tmp_store('scale', scale) @property def device(self): return self.dummy.device def tmp_store(self, key, value): self.register_buffer(key, value, persistent = False) def get_seq_pos(self, seq_len, device, dtype, offset = 0): return (torch.arange(seq_len, device = device, dtype = dtype) + offset) / self.interpolate_factor def rotate_queries_or_keys(self, t, seq_dim = None, offset = 0, freq_seq_len = None, seq_pos = None): seq_dim = default(seq_dim, self.default_seq_dim) assert not self.use_xpos, 'you must use `.rotate_queries_and_keys` method instead and pass in both queries and keys, for length extrapolatable rotary embeddings' device, dtype, seq_len = t.device, t.dtype, t.shape[seq_dim] if exists(freq_seq_len): assert freq_seq_len >= seq_len seq_len = freq_seq_len if seq_pos is None: seq_pos = self.get_seq_pos(seq_len, device = device, dtype = dtype, offset = offset) else: assert seq_pos.shape[0] == seq_len freqs = self.forward(seq_pos, seq_len = seq_len, offset = offset) if seq_dim == -3: freqs = rearrange(freqs, 'n d -> n 1 d') return apply_rotary_emb(freqs, t, seq_dim = seq_dim) def rotate_queries_with_cached_keys(self, q, k, seq_dim = None, offset = 0): seq_dim = default(seq_dim, self.default_seq_dim) q_len, k_len = q.shape[seq_dim], k.shape[seq_dim] assert q_len <= k_len rotated_q = self.rotate_queries_or_keys(q, seq_dim = seq_dim, freq_seq_len = k_len) rotated_k = self.rotate_queries_or_keys(k, seq_dim = seq_dim) rotated_q = rotated_q.type(q.dtype) rotated_k = rotated_k.type(k.dtype) return rotated_q, rotated_k def rotate_queries_and_keys(self, q, k, seq_dim = None): seq_dim = default(seq_dim, self.default_seq_dim) assert self.use_xpos device, dtype, seq_len = q.device, q.dtype, q.shape[seq_dim] seq = self.get_seq_pos(seq_len, dtype = dtype, device = device) freqs = self.forward(seq, seq_len = seq_len) scale = self.get_scale(seq, seq_len = seq_len).to(dtype) if seq_dim == -3: freqs = rearrange(freqs, 'n d -> n 1 d') scale = rearrange(scale, 'n d -> n 1 d') rotated_q = apply_rotary_emb(freqs, q, scale = scale, seq_dim = seq_dim) rotated_k = apply_rotary_emb(freqs, k, scale = scale ** -1, seq_dim = seq_dim) rotated_q = rotated_q.type(q.dtype) rotated_k = rotated_k.type(k.dtype) return rotated_q, rotated_k @beartype def get_scale( self, t: Tensor, seq_len: Optional[int] = None, offset = 0 ): assert self.use_xpos should_cache = exists(seq_len) if ( should_cache and \ exists(self.cached_scales) and \ (seq_len + offset) <= self.cached_scales.shape[0] ): return self.cached_scales[offset:(offset + seq_len)] scale = 1. if self.use_xpos: power = (t - len(t) // 2) / self.scale_base scale = self.scale ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) if should_cache: self.tmp_store('cached_scales', scale) return scale def get_axial_freqs(self, *dims): Colon = slice(None) all_freqs = [] for ind, dim in enumerate(dims): if self.freqs_for == 'pixel': pos = torch.linspace(-1, 1, steps = dim, device = self.device) else: pos = torch.arange(dim, device = self.device) freqs = self.forward(pos, seq_len = dim) all_axis = [None] * len(dims) all_axis[ind] = Colon new_axis_slice = (Ellipsis, *all_axis, Colon) all_freqs.append(freqs[new_axis_slice]) all_freqs = broadcast_tensors(*all_freqs) return torch.cat(all_freqs, dim = -1) @autocast(enabled = False) def forward( self, t: Tensor, seq_len = None, offset = 0 ): # should_cache = ( # not self.learned_freq and \ # exists(seq_len) and \ # self.freqs_for != 'pixel' # ) # if ( # should_cache and \ # exists(self.cached_freqs) and \ # (offset + seq_len) <= self.cached_freqs.shape[0] # ): # return self.cached_freqs[offset:(offset + seq_len)].detach() freqs = self.freqs freqs = einsum('..., f -> ... f', t.type(freqs.dtype), freqs) freqs = repeat(freqs, '... n -> ... (n r)', r = 2) # if should_cache: # self.tmp_store('cached_freqs', freqs.detach()) return freqs