output_dir: "samples/inference" output_name: "i2v" pretrained_model_path: "TIGER-Lab/ConsistI2V" unet_path: null unet_ckpt_prefix: "module." pipeline_pretrained_path: null sampling_kwargs: height: 256 width: 256 n_frames: 16 steps: 50 ddim_eta: 0.0 guidance_scale_txt: 7.5 guidance_scale_img: 1.0 guidance_rescale: 0.0 num_videos_per_prompt: 1 frame_stride: 3 unet_additional_kwargs: variant: null n_temp_heads: 8 augment_temporal_attention: true temp_pos_embedding: "rotary" # "rotary" or "sinusoidal" first_frame_condition_mode: "concat" use_frame_stride_condition: true noise_sampling_method: "pyoco_mixed" # "vanilla" or "pyoco_mixed" or "pyoco_progressive" noise_alpha: 1.0 noise_scheduler_kwargs: beta_start: 0.00085 beta_end: 0.012 beta_schedule: "linear" steps_offset: 1 clip_sample: false rescale_betas_zero_snr: false # true if using zero terminal snr timestep_spacing: "leading" # "trailing" if using zero terminal snr prediction_type: "epsilon" # "v_prediction" if using zero terminal snr frameinit_kwargs: enable: true camera_motion: null noise_level: 850 filter_params: method: 'gaussian' d_s: 0.25 d_t: 0.25