import csv import requests from io import StringIO from typing import Union, Optional, Tuple from PIL import Image import random __version__ = "0.0.1_GenAI_Arena" DOMAIN = "https://chromaica.github.io/Museum/" TASK_DICT = { "t2i": "ImagenHub_Text-Guided_IG", "tie": "ImagenHub_Text-Guided_IE", "mie": "ImagenHub_Control-Guided_IG", "cig": "ImagenHub_Control-Guided_IE", "msdig": "ImagenHub_Multi-Concept_IC", "sdig": "ImagenHub_Subject-Driven_IG", "sdie": "ImagenHub_Subject-Driven_IE" } t2i_models= [ "SD", "SDXL", "OpenJourney", "DeepFloydIF", "DALLE2" ] mie_models = [ "Glide", "SDInpaint", "BlendedDiffusion", "SDXLInpaint" ] tie_models = [ "DiffEdit", "MagicBrush", "InstructPix2Pix", "Prompt2prompt", "Text2Live", "SDEdit", "CycleDiffusion", "Pix2PixZero" ] sdig_models = [ "DreamBooth", "DreamBoothLora", "TextualInversion", "BLIPDiffusion_Gen" ] sdie_models = [ "PhotoSwap", "DreamEdit", "BLIPDiffusion_Edit" ] msdig_models = [ "DreamBooth", "CustomDiffusion", "TextualInversion" ] cig_models = [ "ControlNet", "UniControl" ] def fetch_csv_keys(url): """ Fetches a CSV file from a given URL and parses it into a list of keys, ignoring the header line. """ response = requests.get(url) response.raise_for_status() # Ensure we notice bad responses # Use StringIO to turn the fetched text data into a file-like object csv_file = StringIO(response.text) # Create a CSV reader csv_reader = csv.reader(csv_file) # Skip the header next(csv_reader, None) # Return the list of keys return [row[0] for row in csv_reader if row] def fetch_json_data(url): """ Fetches JSON data from a given URL. """ response = requests.get(url) response.raise_for_status() return response.json() def fetch_data_and_match(csv_url, json_url): """ Fetches a list of keys from a CSV and then fetches JSON data and matches the keys to the JSON. """ # Fetch keys from CSV keys = fetch_csv_keys(csv_url) # Fetch JSON data json_data = fetch_json_data(json_url) # Extract relevant data using keys matched_data = {key: json_data.get(key) for key in keys if key in json_data} return matched_data def fetch_indexes(baselink): matched_results = fetch_data_and_match(baselink+"/dataset_lookup.csv", baselink+"/dataset_lookup.json") return matched_results if __name__ == "__main__": domain = "https://chromaica.github.io/Museum/" baselink = domain + "ImagenHub_Text-Guided_IE" matched_results = fetch_indexes(baselink) for uid, value in matched_results.items(): print(uid) model = "CycleDiffusion" image_link = baselink + "/" + model + "/" + uid print(image_link) instruction = value['instruction'] print(instruction)