from dotenv import load_dotenv import os import json from fastapi import FastAPI, Request, Form, Response from fastapi.responses import HTMLResponse from fastapi.templating import Jinja2Templates from fastapi.staticfiles import StaticFiles from fastapi.encoders import jsonable_encoder from langchain_community.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import RetrievalQA from langchain.llms import OpenAI from langchain import PromptTemplate from langchain.embeddings import OpenAIEmbeddings, HuggingFaceEmbeddings import chainlit as cl from ingest import Ingest # setx OPENAI_API_KEY "your_openai_api_key_here" # Access the Hugging Face API token from an environment variable # huggingface_token = os.getenv("HUGGINGFACE_TOKEN") # if huggingface_token is None: # raise ValueError("Hugging Face token is not set in environment variables.") openai_api_key = "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" if openai_api_key is None: raise ValueError("OAI token is not set in environment variables.") app = FastAPI() templates = Jinja2Templates(directory="templates") app.mount("/static", StaticFiles(directory="static"), name="static") english_embedding_model = "text-embedding-3-large" czech_embedding_model = "Seznam/simcse-dist-mpnet-paracrawl-cs-en" czech_store = "stores/czech_512" english_store = "stores/english_512" ingestor = Ingest( openai_api_key=openai_api_key, chunk=512, overlap=256, czech_store=czech_store, english_store=english_store, czech_embedding_model=czech_embedding_model, english_embedding_model=english_embedding_model, ) def prompt_en(): prompt_template_en = """You are electrical engineer and you answer users ###Question. #Your answer has to be helpful, relevant and closely related to the user's ###Question. #Provide as much literal information and transcription from the #Context as possible. #Only use your own words to connect, clarify or explain the information! #If you don't know the answer, just say that you don't know, don't try to make up an answer. ###Context: {context} ###Question: {question} Only return the helpful answer below and nothing else. Helpful answer: """ prompt_en = PromptTemplate( template=prompt_template_en, input_variables=["context", "question"] ) print("\n Prompt ready... \n\n") return prompt_en def prompt_cz(): prompt_template_cz = """Jste elektroinženýr a odpovídáte uživatelům na ###Otázku. #Vaše odpověď musí být užitečná, relevantní a úzce souviset s uživatelovou ###Otázkou. #Poskytněte co nejvíce doslovných informací a přepisů z #Kontextu. #Použijte vlastní slova pouze pro spojení, objasnění nebo vysvětlení informací! #Pokud odpověď neznáte, prostě řekněte, že to nevíte, nepokoušejte se vymýšlet odpověď. ###Kontext: {context} ###Otázka: {question} Níže vraťte pouze užitečnou odpověď a nic jiného. Užitečná odpověď: """ prompt_cz = PromptTemplate( template=prompt_template_cz, input_variables=["context", "question"] ) print("\n Prompt ready... \n\n") return prompt_cz @app.get("/", response_class=HTMLResponse) def read_item(request: Request): return templates.TemplateResponse("index.html", {"request": request}) @app.post("/ingest_data") async def ingest_data(folderPath: str = Form(...), language: str = Form(...)): # Determine the correct data path and store based on the language if language == "czech": print("\n Czech language selected....\n\n") ingestor.data_czech = folderPath ingestor.ingest_czech() message = "Czech data ingestion complete." else: print("\n English language selected....\n\n") ingestor.data_english = folderPath ingestor.ingest_english() message = "English data ingestion complete." return {"message": message} @app.post("/get_response") async def get_response(query: str = Form(...), language: str = Form(...)): print(language) if language == "czech": prompt = prompt_cz() print("\n Czech language selected....\n\n") embedding_model = czech_embedding_model persist_directory = czech_store model_name = embedding_model model_kwargs = {"device": "cpu"} encode_kwargs = {"normalize_embeddings": False} embedding = HuggingFaceEmbeddings( model_name=model_name, model_kwargs=model_kwargs, encode_kwargs=encode_kwargs, ) else: prompt = prompt_en() print("\n English language selected....\n\n") embedding_model = english_embedding_model # Default to English persist_directory = english_store embedding = OpenAIEmbeddings( openai_api_key=openai_api_key, model=embedding_model, ) vectordb = FAISS.load_local(persist_directory, embedding) retriever = vectordb.as_retriever(search_kwargs={"k": 3}) chain_type_kwargs = {"prompt": prompt} qa_chain = RetrievalQA.from_chain_type( llm=OpenAI(openai_api_key=openai_api_key), chain_type="stuff", retriever=retriever, return_source_documents=True, chain_type_kwargs=chain_type_kwargs, verbose=True, ) response = qa_chain(query) for i in response["source_documents"]: print(f"\n{i}\n\n") print(response) answer = response["result"] source_document = response["source_documents"][0].page_content doc = response["source_documents"][0].metadata["source"] response_data = jsonable_encoder( json.dumps({"answer": answer, "source_document": source_document, "doc": doc}) ) res = Response(response_data) return res