import streamlit as st from streamlit_elements import elements, mui, editor, dashboard from stqdm import stqdm import textgrad as tg import os class MathSolution: def __init__(self, data) -> None: self.data = data if 'default_initial_solution' not in st.session_state: st.session_state.default_initial_solution = self.data["default_initial_solution"] if 'loss_system_prompt' not in st.session_state: st.session_state.loss_system_prompt = self.data["default_loss_system_prompt"] if 'instruction' not in st.session_state: st.session_state.instruction = self.data["instruction"] if 'current_solution' not in st.session_state: st.session_state.current_solution = self.data["default_initial_solution"] self.llm_engine = tg.get_engine("gpt-4o") print("="*50, "init", "="*50) self.loss_value = "" self.gradients = "" if 'iteration' not in st.session_state: st.session_state.iteration = 0 st.session_state.results = [] tg.set_backward_engine(self.llm_engine, override=True) def load_layout(self): def update_solution_content(value): if st.session_state.iteration == 0: st.session_state.current_solution = value # print(f"Code updated: {st.session_state.code_content}") col1, col2 = st.columns([1, 1]) with col1: # self.initial_solution = st.text_area("Initial solution:", self.data["default_initial_solution"], height=300) solution = st.text_area("Initial solution:", st.session_state.default_initial_solution, height=300) # Update session state when text changes if solution is not None and st.session_state.default_initial_solution != solution: update_solution_content(solution) with col2: self.loss_system_prompt = st.text_area("Loss system prompt:", st.session_state.loss_system_prompt, height=300) def _run(self): # Set up the textgrad variables current_solution = st.session_state.current_solution self.response = tg.Variable(current_solution, requires_grad=True, role_description="solution to the math question") loss_fn = tg.TextLoss(tg.Variable(self.loss_system_prompt, requires_grad=False, role_description="system prompt")) optimizer = tg.TGD([self.response]) loss = loss_fn(self.response) self.loss_value = loss.value self.graph = loss.generate_graph() loss.backward() self.gradients = self.response.gradients optimizer.step() # Let's update the solution st.session_state.current_solution = self.response.value def show_results(self): self._run() st.session_state.iteration += 1 st.session_state.results.append({ 'iteration': st.session_state.iteration, 'loss_value': self.loss_value, 'response': self.response.value, 'gradients': self.gradients }) tabs = st.tabs([f"Iteration {i+1}" for i in range(st.session_state.iteration)]) for i, tab in enumerate(tabs): with tab: result = st.session_state.results[i] st.markdown(f"Current iteration: **{result['iteration']}**") st.markdown("## Current solution:") st.markdown(result['response']) col1, col2 = st.columns([1, 1]) with col1: st.markdown("### Loss value") st.markdown("**Loss value is based on previous code.**") st.markdown(result['loss_value']) with col2: st.markdown("### Code gradients") for j, g in enumerate(result['gradients']): st.markdown(f"### Gradient") st.markdown(g.value)