import os import gradio as gr from gradio_imageslider import ImageSlider import argparse from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype import numpy as np import torch from SUPIR.util import create_SUPIR_model, load_QF_ckpt from PIL import Image import einops import copy import math import time import random import spaces from huggingface_hub import hf_hub_download hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k") hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR") hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR") hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR") hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning") parser = argparse.ArgumentParser() parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml') parser.add_argument("--ip", type=str, default='127.0.0.1') parser.add_argument("--port", type=int, default='6688') parser.add_argument("--no_llava", action='store_true', default=True)#False parser.add_argument("--use_image_slider", action='store_true', default=False)#False parser.add_argument("--log_history", action='store_true', default=False) parser.add_argument("--loading_half_params", action='store_true', default=False)#False parser.add_argument("--use_tile_vae", action='store_true', default=True)#False parser.add_argument("--encoder_tile_size", type=int, default=512) parser.add_argument("--decoder_tile_size", type=int, default=64) parser.add_argument("--load_8bit_llava", action='store_true', default=False) args = parser.parse_args() use_llava = not args.no_llava if torch.cuda.device_count() > 0: if torch.cuda.device_count() >= 2: SUPIR_device = 'cuda:0' LLaVA_device = 'cuda:1' elif torch.cuda.device_count() == 1: SUPIR_device = 'cuda:0' LLaVA_device = 'cuda:0' else: SUPIR_device = 'cpu' LLaVA_device = 'cpu' # load SUPIR model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True) if args.loading_half_params: model = model.half() if args.use_tile_vae: model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size) model = model.to(SUPIR_device) model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder) model.current_model = 'v0-Q' ckpt_Q, ckpt_F = load_QF_ckpt(args.opt) llava_agent = None def check_upload(input_image): if input_image is None: raise gr.Error("Please provide an image to restore.") return gr.update(visible = True) def update_seed(is_randomize_seed, seed): if is_randomize_seed: return random.randint(0, 2147483647) return seed def check(input_image): if input_image is None: raise gr.Error("Please provide an image to restore.") @spaces.GPU(duration=420) def stage1_process( input_image, gamma_correction, diff_dtype, ae_dtype ): print('stage1_process ==>>') if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return None, None torch.cuda.set_device(SUPIR_device) LQ = HWC3(input_image) LQ = fix_resize(LQ, 512) # stage1 LQ = np.array(LQ) / 255 * 2 - 1 LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :] model.ae_dtype = convert_dtype(ae_dtype) model.model.dtype = convert_dtype(diff_dtype) LQ = model.batchify_denoise(LQ, is_stage1=True) LQ = (LQ[0].permute(1, 2, 0) * 127.5 + 127.5).cpu().numpy().round().clip(0, 255).astype(np.uint8) # gamma correction LQ = LQ / 255.0 LQ = np.power(LQ, gamma_correction) LQ *= 255.0 LQ = LQ.round().clip(0, 255).astype(np.uint8) print('<<== stage1_process') return LQ, gr.update(visible = True) def stage2_process( noisy_image, rotation, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ): print("noisy_image: " + str(noisy_image)) print("rotation: " + str(rotation)) print("denoise_image: " + str(denoise_image)) print("prompt: " + str(prompt)) print("a_prompt: " + str(a_prompt)) print("n_prompt: " + str(n_prompt)) print("num_samples: " + str(num_samples)) print("min_size: " + str(min_size)) print("downscale: " + str(downscale)) print("upscale: " + str(upscale)) print("edm_steps: " + str(edm_steps)) print("s_stage1: " + str(s_stage1)) print("s_stage2: " + str(s_stage2)) print("s_cfg: " + str(s_cfg)) print("randomize_seed: " + str(randomize_seed)) print("seed: " + str(seed)) print("s_churn: " + str(s_churn)) print("s_noise: " + str(s_noise)) print("color_fix_type: " + str(color_fix_type)) print("diff_dtype: " + str(diff_dtype)) print("ae_dtype: " + str(ae_dtype)) print("gamma_correction: " + str(gamma_correction)) print("linear_CFG: " + str(linear_CFG)) print("linear_s_stage2: " + str(linear_s_stage2)) print("spt_linear_CFG: " + str(spt_linear_CFG)) print("spt_linear_s_stage2: " + str(spt_linear_s_stage2)) print("model_select: " + str(model_select)) print("output_format: " + str(output_format)) print("GPU time allocation: " + str(allocation) + " min") if output_format == "input": if noisy_image is None: output_format = "png" else: output_format = noisy_image.format if prompt is None: prompt = "" if a_prompt is None: a_prompt = "" if n_prompt is None: n_prompt = "" if prompt != "" and a_prompt != "": a_prompt = prompt + ", " + a_prompt else: a_prompt = prompt + a_prompt print("Final prompt: " + str(a_prompt)) noisy_image = noisy_image if denoise_image is None else denoise_image if rotation == 90: noisy_image = np.array(list(zip(*noisy_image[::-1]))) elif rotation == 180: noisy_image = np.array(list(zip(*noisy_image[::-1]))) noisy_image = np.array(list(zip(*noisy_image[::-1]))) elif rotation == -90: noisy_image = np.array(list(zip(*noisy_image))[::-1]) if 1 < downscale: input_height, input_width, input_channel = noisy_image.shape noisy_image = np.array(Image.fromarray(noisy_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS)) # Allocation if allocation == 1: return restore_in_1min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 2: return restore_in_2min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 3: return restore_in_3min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 4: return restore_in_4min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 5: return restore_in_5min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 7: return restore_in_7min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 8: return restore_in_8min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 9: return restore_in_9min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) if allocation == 10: return restore_in_10min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) else: return restore_in_6min( noisy_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ) @spaces.GPU(duration=60) def restore_in_1min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=120) def restore_in_2min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=180) def restore_in_3min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=240) def restore_in_4min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=300) def restore_in_5min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=360) def restore_in_6min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=420) def restore_in_7min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=480) def restore_in_8min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=540) def restore_in_9min(*args, **kwargs): return restore(*args, **kwargs) @spaces.GPU(duration=599) def restore_in_10min(*args, **kwargs): return restore(*args, **kwargs) def restore( input_image, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ): start = time.time() print('stage2_process ==>>') if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return [input_image] * 2, [input_image], None, None torch.cuda.set_device(SUPIR_device) if model_select != model.current_model: print('load ' + model_select) if model_select == 'v0-Q': model.load_state_dict(ckpt_Q, strict=False) elif model_select == 'v0-F': model.load_state_dict(ckpt_F, strict=False) model.current_model = model_select input_image = HWC3(input_image) input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size) LQ = np.array(input_image) / 255.0 LQ = np.power(LQ, gamma_correction) LQ *= 255.0 LQ = LQ.round().clip(0, 255).astype(np.uint8) LQ = LQ / 255 * 2 - 1 LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :] if use_llava: captions = [prompt] else: captions = [''] model.ae_dtype = convert_dtype(ae_dtype) model.model.dtype = convert_dtype(diff_dtype) samples = model.batchify_sample(LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn, s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed, num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type, use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2, cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2) x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip( 0, 255).astype(np.uint8) results = [x_samples[i] for i in range(num_samples)] # All the results have the same size result_height, result_width, result_channel = np.array(results[0]).shape print('<<== stage2_process') end = time.time() secondes = int(end - start) minutes = math.floor(secondes / 60) secondes = secondes - (minutes * 60) hours = math.floor(minutes / 60) minutes = minutes - (hours * 60) information = ("Start the process again if you want a different result. " if randomize_seed else "") + \ "If you don't get the image you wanted, add more details in the « Image description ». " + \ "Wait " + str(allocation) + " min before a new run to avoid quota penalty or use another computer. " + \ "The image(s) has(ve) been generated in " + \ ((str(hours) + " h, ") if hours != 0 else "") + \ ((str(minutes) + " min, ") if hours != 0 or minutes != 0 else "") + \ str(secondes) + " sec. " + \ "The new image resolution is " + str(result_width) + \ " pixels large and " + str(result_height) + \ " pixels high, so a resolution of " + f'{result_width * result_height:,}' + " pixels." print(information) # Only one image can be shown in the slider return [input_image] + [results[0]], gr.update(format = output_format, value = results), gr.update(value = information, visible = True) def load_and_reset(param_setting): print('load_and_reset ==>>') if torch.cuda.device_count() == 0: gr.Warning('Set this space to GPU config to make it work.') return None, None, None, None, None, None, None, None, None, None, None, None, None, None edm_steps = default_setting.edm_steps s_stage2 = 1.0 s_stage1 = -1.0 s_churn = 5 s_noise = 1.003 a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \ 'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \ 'detailing, hyper sharpness, perfect without deformations.' n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \ '3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \ 'signature, jpeg artifacts, deformed, lowres, over-smooth' color_fix_type = 'Wavelet' spt_linear_s_stage2 = 0.0 linear_s_stage2 = False linear_CFG = True if param_setting == "Quality": s_cfg = default_setting.s_cfg_Quality spt_linear_CFG = default_setting.spt_linear_CFG_Quality model_select = "v0-Q" elif param_setting == "Fidelity": s_cfg = default_setting.s_cfg_Fidelity spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity model_select = "v0-F" else: raise NotImplementedError gr.Info('The parameters are reset.') print('<<== load_and_reset') return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \ linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select def log_information(result_gallery): print('log_information') if result_gallery is not None: for i, result in enumerate(result_gallery): print(result[0]) def on_select_result(result_slider, result_gallery, evt: gr.SelectData): print('on_select_result') return [result_slider[0], result_gallery[evt.index][0]] title_html = """

SUPIR

Upscale your images up to x8 freely, without account, without watermark and download it
🤸🤸

This is an online demo of SUPIR, a practicing model scaling for photo-realistic image restoration. It is still a research project under tested and is not yet a stable commercial product. The content added by SUPIR is imagination, not real-world information. SUPIR is for beauty and illustration only. Most of the processes only last few minutes. This demo can handle huge images but the process will be aborted if it lasts more than 8 min. Please leave a message in discussion if you encounter issues.

PaperProject PageLocal Install Guide

""" claim_md = """ ## **Piracy** The images are not stored but the logs are saved during a month. ## **How to get SUPIR** You can get SUPIR on HuggingFace by [duplicating this space](https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true) and set GPU. You can also install SUPIR on your computer following [this tutorial](https://huggingface.co/blog/MonsterMMORPG/supir-sota-image-upscale-better-than-magnific-ai). ## **Terms of use** By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. Please submit a feedback to us if you get any inappropriate answer! We will collect those to keep improving our models. For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. ## **License** The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/Fanghua-Yu/SUPIR) of SUPIR. """ # Gradio interface with gr.Blocks() as interface: if torch.cuda.device_count() == 0: with gr.Row(): gr.HTML("""

⚠️To use SUPIR, duplicate this space and set a GPU with 30 GB VRAM. You can't use SUPIR directly here because this space runs on a CPU, which is not enough for SUPIR. Please provide feedback if you have issues.

""") gr.HTML(title_html) input_image = gr.Image(label="Input (*.png, *.webp, *.jpeg, *.gif, *.bmp)", show_label=True, type="numpy", height=600, elem_id="image-input") rotation = gr.Radio([["No rotation", 0], ["⤵ Rotate +90°", 90], ["↩ Return 180°", 180], ["⤴ Rotate -90°", -90]], label="Orientation correction", info="Will apply the following rotation before restoring the image; the AI needs a good orientation to understand the content", value=0, interactive=True, visible=False) with gr.Group(): prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; I advise you to write in English because other languages may not be handled", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3) prompt_hint = gr.HTML("You can use a LlaVa space to auto-generate the description of your image.") upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8]], label="Upscale factor", info="Resolution x1 to x8", value=2, interactive=True) allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min", 7], ["8 min", 8]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=6, interactive=True) output_format = gr.Radio([["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="png", interactive=True) with gr.Accordion("Pre-denoising (optional)", open=False): gamma_correction = gr.Slider(label="Gamma Correction", info = "lower=lighter, higher=darker", minimum=0.1, maximum=2.0, value=1.0, step=0.1) denoise_button = gr.Button(value="Pre-denoise") denoise_image = gr.Image(label="Denoised image", show_label=True, type="numpy", sources=[], height=600, elem_id="image-s1") denoise_information = gr.HTML(value="If present, the denoised image will be used for the restoration instead of the input image.", visible=False) with gr.Accordion("Advanced options", open=False): a_prompt = gr.Textbox(label="Additional image description", info="Completes the main image description", value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R ' 'camera, hyper detailed photo - realistic maximum detail, 32k, Color ' 'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, ' 'hyper sharpness, perfect without deformations.', lines=3) n_prompt = gr.Textbox(label="Anti image description", info="Disambiguate by listing what the image does NOT represent", value='painting, oil painting, illustration, drawing, art, sketch, anime, ' 'cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, ' 'worst quality, low quality, frames, watermark, signature, jpeg artifacts, ' 'deformed, lowres, over-smooth', lines=3) edm_steps = gr.Slider(label="Steps", info="lower=faster, higher=more details", minimum=1, maximum=200, value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, step=1) num_samples = gr.Slider(label="Num Samples", info="Number of generated results", minimum=1, maximum=4 if not args.use_image_slider else 1 , value=1, step=1) min_size = gr.Slider(label="Minimum size", info="Minimum height, minimum width of the result", minimum=32, maximum=4096, value=1024, step=32) downscale = gr.Radio([["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4], ["/5", 5], ["/6", 6], ["/7", 7], ["/8", 8]], label="Pre-downscale factor", info="Reducing blurred image reduce the process time", value=1, interactive=True) with gr.Row(): with gr.Column(): model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q", interactive=True) with gr.Column(): color_fix_type = gr.Radio(["None", "AdaIn", "Wavelet"], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="Wavelet", interactive=True) s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0, value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1) s_stage2 = gr.Slider(label="Restoring Guidance Strength", minimum=0., maximum=1., value=1., step=0.05) s_stage1 = gr.Slider(label="Pre-denoising Guidance Strength", minimum=-1.0, maximum=6.0, value=-1.0, step=1.0) s_churn = gr.Slider(label="S-Churn", minimum=0, maximum=40, value=5, step=1) s_noise = gr.Slider(label="S-Noise", minimum=1.0, maximum=1.1, value=1.003, step=0.001) with gr.Row(): with gr.Column(): linear_CFG = gr.Checkbox(label="Linear CFG", value=True) spt_linear_CFG = gr.Slider(label="CFG Start", minimum=1.0, maximum=9.0, value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.5) with gr.Column(): linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False) spt_linear_s_stage2 = gr.Slider(label="Guidance Start", minimum=0., maximum=1., value=0., step=0.05) with gr.Column(): diff_dtype = gr.Radio(['fp32', 'fp16', 'bf16'], label="Diffusion Data Type", value="fp16", interactive=True) with gr.Column(): ae_dtype = gr.Radio(['fp32', 'bf16'], label="Auto-Encoder Data Type", value="bf16", interactive=True) randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different") seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) with gr.Group(): param_setting = gr.Radio(["Quality", "Fidelity"], interactive=True, label="Presetting", value="Quality") restart_button = gr.Button(value="Apply presetting") with gr.Group(): diffusion_button = gr.Button(value="🚀 Upscale/Restore", variant = "primary", elem_id="process_button") restore_information = gr.HTML(value="Restart the process to get another result.", visible = False) result_slider = ImageSlider(label='Comparator', show_label=False, elem_id="slider1", show_download_button = False) result_gallery = gr.Gallery(label='Downloadable results', show_label=True, elem_id="gallery1") gr.Examples( run_on_click = True, fn = stage2_process, inputs = [ input_image, rotation, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ], outputs = [ result_slider, result_gallery, restore_information ], examples = [ [ "./Examples/Example1.png", 0, None, "Group of people, walking, happy, in the street, photorealistic, 8k, extremely detailled", "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.", "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth", 2, 1024, 1, 8, 200, -1, 1, 7.5, False, 42, 5, 1.003, "AdaIn", "fp16", "bf16", 1.0, True, 4, False, 0., "v0-Q", "png", 5 ], [ "./Examples/Example2.jpeg", 0, None, "The head of a tabby cat, in a house, photorealistic, 8k, extremely detailled", "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.", "painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, bokeh, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth", 1, 1024, 1, 1, 200, -1, 1, 7.5, False, 42, 5, 1.003, "Wavelet", "fp16", "bf16", 1.0, True, 4, False, 0., "v0-Q", "png", 4 ], ], cache_examples = False, ) with gr.Row(): gr.Markdown(claim_md) input_image.upload(fn = check_upload, inputs = [ input_image ], outputs = [ rotation ], queue = False, show_progress = False) denoise_button.click(fn = check, inputs = [ input_image ], outputs = [], queue = False, show_progress = False).success(fn = stage1_process, inputs = [ input_image, gamma_correction, diff_dtype, ae_dtype ], outputs=[ denoise_image, denoise_information ]) diffusion_button.click(fn = update_seed, inputs = [ randomize_seed, seed ], outputs = [ seed ], queue = False, show_progress = False).then(fn = check, inputs = [ input_image ], outputs = [], queue = False, show_progress = False).success(fn=stage2_process, inputs = [ input_image, rotation, denoise_image, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale, edm_steps, s_stage1, s_stage2, s_cfg, randomize_seed, seed, s_churn, s_noise, color_fix_type, diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select, output_format, allocation ], outputs = [ result_slider, result_gallery, restore_information ]).success(fn = log_information, inputs = [ result_gallery ], outputs = [], queue = False, show_progress = False) result_gallery.select(on_select_result, [result_slider, result_gallery], result_slider) restart_button.click(fn = load_and_reset, inputs = [ param_setting ], outputs = [ edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select ]) interface.queue(10).launch()