from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import os model_name = "fine-tuned-model" tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True) model = AutoModelForSequenceClassification.from_pretrained(model_name) device = torch.device("cpu") def predict_sentiment(review_text): inputs = tokenizer(review_text, padding=True, truncation=True, return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predictions = torch.softmax(logits, dim=-1) predicted_label = torch.argmax(predictions, dim=-1).item() sentiment = "Positive" if predicted_label == 1 else "Negative" return sentiment, predictions[0].cpu().numpy()