from transformers import T5ForConditionalGeneration, T5Tokenizer import streamlit as st from PIL import Image import os @st.cache(allow_output_mutation=True) def load_model_cache(): auth_token = os.environ.get("TOKEN_FROM_SECRET") or True tokenizer_pl = T5Tokenizer.from_pretrained( "Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token ) model_pl = T5ForConditionalGeneration.from_pretrained( "Voicelab/vlt5-base-rfc-v1_2", use_auth_token=auth_token ) model_det_pl = T5ForConditionalGeneration.from_pretrained( "Voicelab/vlt5-base-rfc-detector-1.0", use_auth_token=auth_token ) return tokenizer_pl, model_pl, model_det_pl img_full = Image.open("images/vl-logo-nlp-blue.png") img_short = Image.open("images/sVL-NLP-short.png") img_favicon = Image.open("images/favicon_vl.png") max_length: int = 5000 cache_size: int = 100 st.set_page_config( page_title="DEMO - Reason for Contact generation", page_icon=img_favicon, initial_sidebar_state="expanded", ) tokenizer_pl, model_pl, model_det_pl = load_model_cache() def get_predictions(text, mode): input_ids = tokenizer_pl(text, return_tensors="pt", truncation=True).input_ids if mode == "Polish - RfC Generation": output = model_pl.generate( input_ids, no_repeat_ngram_size=1, num_beams=3, num_beam_groups=3, min_length=10, max_length=100, diversity_penalty=1.0, ) elif mode == "Polish - RfC Detection": output = model_det_pl.generate( input_ids, no_repeat_ngram_size=2, num_beams=3, num_beam_groups=3, repetition_penalty=1.5, diversity_penalty=2.0, length_penalty=2.0, ) predicted_rfc = tokenizer_pl.decode(output[0], skip_special_tokens=True) return predicted_rfc def trim_length(): if len(st.session_state["input"]) > max_length: st.session_state["input"] = st.session_state["input"][:max_length] if __name__ == "__main__": st.sidebar.image(img_short) st.image(img_full) st.title("VLT5 - Reason for Contact generator") st.markdown("#### RfC Generation model.") st.markdown("**Input**: Whole conversation. Should specify roles e.g. *AGENT: Hello, how can I help you? CLIENT: Hi, I would like to report a stolen card.* Put a whole conversation or full e-mail here.") st.markdown("**Output**: Reason for calling for the whole conversation.") st.markdown("#### RfC Detection model.") st.markdown("**Input**: A single turn from the conversation e.g. *'Hello, how can I help you?'* or *'Hi, I would like to report a stolen card.'. Put a single turn or a few sentences here.*") st.markdown("**Output**: Model will return an empty string if a turn possibly does not includes Reason for Calling, or a sentence if the RfC is detected.") generated_rfc = "" user_input = st.text_area( label=f"Input text (max {max_length} characters)", value="", height=300, on_change=trim_length, key="input", ) mode = st.sidebar.title("Model settings") mode = st.sidebar.radio( "Select model to test", [ "Polish - RfC Generation", "Polish - RfC Detection", ], ) result = st.button("Find reason for contact") if result: generated_rfc = get_predictions(text=user_input, mode=mode) st.text_area("Find reason for contact", generated_rfc) print(f"Input: {user_input} ---> Reason for contact: {generated_rfc}")