import streamlit as st from sklearn.linear_model import LinearRegression import pickle import numpy as np # Load the pre-trained model and scaler with open('regression_model.pkl', 'rb') as model_file: model = pickle.load(model_file) with open('scaler.pkl', 'rb') as scaler_file: scaler = pickle.load(scaler_file) # Streamlit Input Fields st.title("Boston Housing Pred App ⌨🏠") crim = st.number_input("Enter the crim", value=0.0) zn = st.number_input("Enter the zn", value=0.0) indus = st.number_input("Enter the indus", value=0.0) chas = st.number_input("Enter the chas", value=0.0) nox = st.number_input("Enter the nox", value=0.0) rm = st.number_input("Enter the rm", value=0.0) age = st.number_input("Enter your age", value=0.0) dis = st.number_input("Enter the dis", value=0.0) rad = st.number_input("Enter the rad", value=0.0) ptratio = st.number_input("Enter the ptratio", value=0.0) b = st.number_input("Enter B", value=0.0) istat = st.number_input("Enter istat", value=0.0) tax = st.number_input("Enter tax", value=0.0) # Predict when button is pressed if st.button("Predict"): # Prepare the input data input_data = np.array([[crim,zn, indus, chas, nox, rm, age, dis, rad, ptratio, b, istat, tax]]) # Scale the input data input_data_scaled = scaler.transform(input_data) # Make the prediction result = model.predict(input_data_scaled) # Display the prediction st.write(f"The predicted result is: {result[0]:.2f}$")