import gradio as gr import os import wget from llama_cpp import Llama import random url = 'https://huggingface.co/TheBloke/WizardLM-7B-uncensored-GGML/resolve/main/WizardLM-7B-uncensored.ggmlv3.q4_0.bin' filename = wget.download(url) llm2 = Llama(model_path=filename, seed=random.randint(1, 2**31)) theme = gr.themes.Soft( primary_hue=gr.themes.Color("#ededed", "#fee2e2", "#fecaca", "#fca5a5", "#f87171", "#ef4444", "#dc2626", "#b91c1c", "#991b1b", "#7f1d1d", "#6c1e1e"), neutral_hue="red", ) title = """

Chat with awesome WizardLM 7b model!


""" with gr.Blocks(theme=theme) as demo: gr.HTML(title) gr.HTML("This model is awesome for its size! It is only 20th the size of Chatgpt but is around 90% as good as Chatgpt. However, please don't rely on WizardLM to provide 100% true information as it might be wrong sometimes. ") chatbot = gr.Chatbot() msg = gr.Textbox() clear = gr.ClearButton([msg, chatbot]) #instruction = gr.Textbox(label="Instruction", placeholder=) def user(user_message, history): return gr.update(value="", interactive=True), history + [[user_message, None]] def bot(history): #instruction = history[-1][1] or "" user_message = history[-1][0] #token1 = llm.tokenize(b"### Instruction: ") #token2 = llm.tokenize(instruction.encode()) #token3 = llm2.tokenize(b"USER: ") tokens3 = llm2.tokenize(user_message.encode()) token4 = llm2.tokenize(b"\n\n### Response:") tokens = tokens3 + token4 history[-1][1] = "" count = 0 output = "" for token in llm2.generate(tokens, top_k=50, top_p=0.73, temp=0.72, repeat_penalty=1.1): text = llm2.detokenize([token]) output += text.decode() count += 1 if count >= 500 or (token == llm2.token_eos()): break history[-1][1] += text.decode() yield history response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( bot, chatbot, chatbot ) response.then(lambda: gr.update(interactive=True), None, [msg], queue=False) gr.HTML("Thanks for checking out this app!") demo.queue() demo.launch(debug=True)