import gradio as gr import pickle def model(sl,sw,pl,pw): sepal_length = float() sepal_width = float() petal_length = float() petal_width = float() dataframe = pd.DataFrame({"sepal length (cm)":[sepal_length],"sepal width (cm)":[sepal_width],'petal length (cm)':[petal_length],'petal width (cm)':[petal_width]}) with open('/content/model.pkl', 'rb') as file: loaded_model = pickle.load(file) output = loaded_model.predict(dataframe) if output == 0: return"The output class is setosa" elif output == 1: return"The output class is versicolor" elif output == 2: return"The output class is virginica" with gr.Blocks() as demo: with gr.Row(): sepal_length = gr.Number(label="Sepal length (cm)", value=5.1) sepal_width = gr.Number(label="Sepal width (cm)", value=3.5) petal_length = gr.Number(label="Petal length (cm)", value=1.1) petal_width = gr.Number(label="Petal width (cm)", value=2.1) with gr.Row(): outputs = gr.Textbox(label='Prediction') run = gr.Button(value="Prediction") run.click(model, inputs=[sepal_length, sepal_width, petal_length, petal_width], outputs=outputs) demo.launch(debug=True, share=True)