import os import imageio import numpy as np from typing import Union, Optional import torch import torchvision import torch.distributed as dist from tqdm import tqdm from einops import rearrange import cv2 import math import moviepy.editor as mpy from PIL import Image # We recommend to use the following affinity score(motion magnitude) # Also encourage to try to construct different score by yourself RANGE_LIST = [ [1.0, 0.9, 0.85, 0.85, 0.85, 0.8], # 0 Small Motion [1.0, 0.8, 0.8, 0.8, 0.79, 0.78, 0.75], # Moderate Motion [1.0, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.6, 0.5, 0.5], # Large Motion [1.0 , 0.9 , 0.85, 0.85, 0.85, 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.8 , 0.85, 0.85, 0.9 , 1.0 ], # Loop [1.0 , 0.8 , 0.8 , 0.8 , 0.79, 0.78, 0.75, 0.75, 0.75, 0.75, 0.75, 0.78, 0.79, 0.8 , 0.8 , 1.0 ], # Loop [1.0 , 0.8 , 0.7 , 0.7 , 0.7 , 0.7 , 0.6 , 0.5 , 0.5 , 0.6 , 0.7 , 0.7 , 0.7 , 0.7 , 0.8 , 1.0 ], # Loop [0.5, 0.2], # Style Transfer Large Motion [0.5, 0.4, 0.4, 0.4, 0.35, 0.35, 0.3, 0.25, 0.2], # Style Transfer Moderate Motion [0.5, 0.4, 0.4, 0.4, 0.35, 0.3], # Style Transfer Candidate Small Motion ] def zero_rank_print(s): if (not dist.is_initialized()) or (dist.is_initialized() and dist.get_rank() == 0): print("### " + s) def save_videos_mp4(video: torch.Tensor, path: str, fps: int=8): video = rearrange(video, "b c t h w -> t b c h w") num_frames, batch_size, channels, height, width = video.shape assert batch_size == 1,\ 'Only support batch size == 1' video = video.squeeze(1) video = rearrange(video, "t c h w -> t h w c") def make_frame(t): frame_tensor = video[int(t * fps)] frame_np = (frame_tensor * 255).numpy().astype('uint8') return frame_np clip = mpy.VideoClip(make_frame, duration=num_frames / fps) clip.write_videofile(path, fps=fps, codec='libx264') def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8): videos = rearrange(videos, "b c t h w -> t b c h w") outputs = [] for x in videos: x = torchvision.utils.make_grid(x, nrow=n_rows) x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) if rescale: x = (x + 1.0) / 2.0 # -1,1 -> 0,1 x = torch.clamp((x * 255), 0, 255).numpy().astype(np.uint8) outputs.append(x) os.makedirs(os.path.dirname(path), exist_ok=True) imageio.mimsave(path, outputs, fps=fps) # DDIM Inversion @torch.no_grad() def init_prompt(prompt, pipeline): uncond_input = pipeline.tokenizer( [""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, return_tensors="pt" ) uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] text_input = pipeline.tokenizer( [prompt], padding="max_length", max_length=pipeline.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] context = torch.cat([uncond_embeddings, text_embeddings]) return context def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): timestep, next_timestep = min( timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] beta_prod_t = 1 - alpha_prod_t next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction return next_sample def get_noise_pred_single(latents, t, context, unet): noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] return noise_pred @torch.no_grad() def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): context = init_prompt(prompt, pipeline) uncond_embeddings, cond_embeddings = context.chunk(2) all_latent = [latent] latent = latent.clone().detach() for i in tqdm(range(num_inv_steps)): t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) latent = next_step(noise_pred, t, latent, ddim_scheduler) all_latent.append(latent) return all_latent @torch.no_grad() def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) return ddim_latents def prepare_mask_coef(video_length:int, cond_frame:int, sim_range:list=[0.2, 1.0]): assert len(sim_range) == 2, \ 'sim_range should has the length of 2, including the min and max similarity' assert video_length > 1, \ 'video_length should be greater than 1' assert video_length > cond_frame,\ 'video_length should be greater than cond_frame' diff = abs(sim_range[0] - sim_range[1]) / (video_length - 1) coef = [1.0] * video_length for f in range(video_length): f_diff = diff * abs(cond_frame - f) f_diff = 1 - f_diff coef[f] *= f_diff return coef def prepare_mask_coef_by_statistics(video_length: int, cond_frame: int, sim_range: int): assert video_length > 0, \ 'video_length should be greater than 0' assert video_length > cond_frame,\ 'video_length should be greater than cond_frame' range_list = RANGE_LIST assert sim_range < len(range_list),\ f'sim_range type{sim_range} not implemented' coef = range_list[sim_range] coef = coef + ([coef[-1]] * (video_length - len(coef))) order = [abs(i - cond_frame) for i in range(video_length)] coef = [coef[order[i]] for i in range(video_length)] return coef def prepare_mask_coef_multi_cond(video_length:int, cond_frames:list, sim_range:list=[0.2, 1.0]): assert len(sim_range) == 2, \ 'sim_range should has the length of 2, including the min and max similarity' assert video_length > 1, \ 'video_length should be greater than 1' assert isinstance(cond_frames, list), \ 'cond_frames should be a list' assert video_length > max(cond_frames),\ 'video_length should be greater than cond_frame' if max(sim_range) == min(sim_range): cond_coefs = [sim_range[0]] * video_length return cond_coefs cond_coefs = [] for cond_frame in cond_frames: cond_coef = prepare_mask_coef(video_length, cond_frame, sim_range) cond_coefs.append(cond_coef) mixed_coef = [0] * video_length for conds in range(len(cond_frames)): for f in range(video_length): mixed_coef[f] = abs(cond_coefs[conds][f] - mixed_coef[f]) if conds > 0: min_num = min(mixed_coef) max_num = max(mixed_coef) for f in range(video_length): mixed_coef[f] = (mixed_coef[f] - min_num) / (max_num - min_num) mixed_max = max(mixed_coef) mixed_min = min(mixed_coef) for f in range(video_length): mixed_coef[f] = (max(sim_range) - min(sim_range)) * (mixed_coef[f] - mixed_min) / (mixed_max - mixed_min) + min(sim_range) mixed_coef = [x if min(sim_range) <= x <= max(sim_range) else min(sim_range) if x < min(sim_range) else max(sim_range) for x in mixed_coef] return mixed_coef def prepare_masked_latent_cond(video_length: int, cond_frames: list): for cond_frame in cond_frames: assert cond_frame < video_length, \ 'cond_frame should be smaller than video_length' assert cond_frame > -1, \ f'cond_frame should be in the range of [0, {video_length}]' cond_frames.sort() nearest = [cond_frames[0]] * video_length for f in range(video_length): for cond_frame in cond_frames: if abs(nearest[f] - f) > abs(cond_frame - f): nearest[f] = cond_frame maked_latent_cond = nearest return maked_latent_cond def estimated_kernel_size(frame_width: int, frame_height: int) -> int: """Estimate kernel size based on video resolution.""" # TODO: This equation is based on manual estimation from a few videos. # Create a more comprehensive test suite to optimize against. size: int = 4 + round(math.sqrt(frame_width * frame_height) / 192) if size % 2 == 0: size += 1 return size def detect_edges(lum: np.ndarray) -> np.ndarray: """Detect edges using the luma channel of a frame. Arguments: lum: 2D 8-bit image representing the luma channel of a frame. Returns: 2D 8-bit image of the same size as the input, where pixels with values of 255 represent edges, and all other pixels are 0. """ # Initialize kernel. kernel_size = estimated_kernel_size(lum.shape[1], lum.shape[0]) kernel = np.ones((kernel_size, kernel_size), np.uint8) # Estimate levels for thresholding. # TODO(0.6.3): Add config file entries for sigma, aperture/kernel size, etc. sigma: float = 1.0 / 3.0 median = np.median(lum) low = int(max(0, (1.0 - sigma) * median)) high = int(min(255, (1.0 + sigma) * median)) # Calculate edges using Canny algorithm, and reduce noise by dilating the edges. # This increases edge overlap leading to improved robustness against noise and slow # camera movement. Note that very large kernel sizes can negatively affect accuracy. edges = cv2.Canny(lum, low, high) return cv2.dilate(edges, kernel) def prepare_mask_coef_by_score(video_shape: list, cond_frame_idx: list, sim_range: list = [0.2, 1.0], statistic: list = [1, 100], coef_max: int = 0.98, score: Optional[torch.Tensor] = None): ''' the shape of video_data is (b f c h w) cond_frame_idx is a list, with length of batch_size the shape of statistic is (f 2) the shape of score is (b f) the shape of coef is (b f) ''' assert len(video_shape) == 2, \ f'the shape of video_shape should be (b f c h w), but now get {len(video_shape.shape)} channels' batch_size, frame_num = video_shape[0], video_shape[1] score = score.permute(0, 2, 1).squeeze(0) # list -> b 1 cond_fram_mat = torch.tensor(cond_frame_idx).unsqueeze(-1) statistic = torch.tensor(statistic) # (f 2) -> (b f 2) statistic = statistic.repeat(batch_size, 1, 1) # shape of order (b f), shape of cond_mat (b f) order = torch.arange(0, frame_num, 1) order = order.repeat(batch_size, 1) cond_mat = torch.ones((batch_size, frame_num)) * cond_fram_mat order = abs(order - cond_mat) statistic = statistic[:,order.to(torch.long)][0,:,:,:] # score (b f) max_s (b f 1) max_stats = torch.max(statistic, dim=2).values.to(dtype=score.dtype) min_stats = torch.min(statistic, dim=2).values.to(dtype=score.dtype) score[score > max_stats] = max_stats[score > max_stats] * 0.95 score[score < min_stats] = min_stats[score < min_stats] eps = 1e-10 coef = 1 - abs((score / (max_stats + eps)) * (max(sim_range) - min(sim_range))) indices = torch.arange(coef.shape[0]).unsqueeze(1) coef[indices, cond_fram_mat] = 1.0 return coef def preprocess_img(img_path, max_size:int=512): ori_image = Image.open(img_path).convert('RGB') width, height = ori_image.size long_edge = max(width, height) if long_edge > max_size: scale_factor = max_size / long_edge else: scale_factor = 1 width = int(width * scale_factor) height = int(height * scale_factor) ori_image = ori_image.resize((width, height)) if (width % 8 != 0) or (height % 8 != 0): in_width = (width // 8) * 8 in_height = (height // 8) * 8 else: in_width = width in_height = height in_image = ori_image in_image = ori_image.resize((in_width, in_height)) # in_image = ori_image.resize((512, 512)) in_image_np = np.array(in_image) return in_image_np, in_height, in_width